<|lI!

z/0S Communications Server

IP Configuration Guide

Jersion 1 Release 4

SC31-8775-02

<|lI!

z/0S Communications Server

IP Configuration Guide

Jersion 1 Release 4

SC31-8775-02

Note:
Before using this information and the product it supports, be sure to read the general information under ['Notices” on]
-page 81

Third Edition (September 2002)

This edition applies to Version 1 Release 4 of z/OS (5694-A01) and Version 1 Release 4 of z/OS.e (5655-G52) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM® publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation

Software Reengineering

Department G7IA/ Bldg 503

Research Triangle Park, NC 27709-9990

U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-254-0206

Internet e-mail:
usib2hpd @vnet.ibm.com

World Wide Web:
[ttp://www.ibm.com/servers/eserver/zseries/zos/webgs.html

IBMLink™:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw @ us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www-1.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . XV
Tables. . Xix
About this document . . OXXi
Who should use this document . . XXi
Where to find more information . . XXi
Where to find related information on the Internet . XXi
Accessing z/OS licensed documents on the Internet . . XXii
Using LookAt to look up message explanations . Xxiii
How to contact IBM service. . XXiii
z/OS Communications Server |nformat|on . Xxiii
Summary of changes . XXX
Part 1. Base TCP/IP system . -1

Chapter 1. Configuration overview
z/OS TCP/IP stack function support.
z/OS msys for Setup and Wizard.
Wizardo
z/OS msys for Setup .
z/OS UNIX System Services (z/OS UNIX) concepts
Overview of data sets and HFS files . ..
Hierarchical File System concepts .
Understanding resolvers .
Setting up a resolver address space .
Resolver customization .
Managing the resolver address space
Understanding search orders of configuration |nformat|on
Configuration data set naming conventions
Configuration files for the TCP/IP stack .
PROFILE.TCPIP search order .
TCPIP.DATA search order .
Configuration files for TCP/IP appllcatlons
Resolver configuration files .o
MVS-related considerations .
MVS system symbols
Automatic restart manager (ARM)
Logging of system messages
Accounting - SMF records.
Security considerations . .
UNIX System Services security conS|derat|ons .
Requirement for an OMVS segment .
Authorization of TCP/IP started task user ID

Other user IDs requiring z/OS UNIX superuser authorlty

BPX.DAEMON facility class .
Program control

Defining TCP/IP as a UNIX System Serwces phyS|caI flle system (PFS)

References . .
Performance conS|derat|ons .
Fast path support .
Considerations for multiple mstances of TCP/IP

© Copyright IBM Corp. 2000, 2002

iv

Common INET physical file system (CINET PFS) .

Port management overview .

Selecting a stack when running muItlpIe mstances of TCP/IP

Specifying BPXPRMxx values for a CINET conflguratlon
Considerations for Enterprise Extender . A
Considerations for VIPA .
Required steps before starting TCP/IP .

Planning your installation and migration .

Step 1: Install z/OS CS.

Verifying the initial installation

Step 2: Customize z/OS CS . .

Step 3: Configure VMCF and TNF.

Step 4: Update the VTAM application deflnmons

Step 5: Verify that the resolver address space is active .

Step 6: Start the TCP/IP address space.

Step 7: Set up cataloged procedures and conflguratlon data sets

Step 8: Customize TCP/IP messages

Chapter 2. Security .
System resource protection
Application security .
TCP/IP resource protection
Protecting data in the network .
Network security principals
Network security protocols.
Security Event Reporting .
Integrated Intrusion Detection Serwces (IDS)

Chapter 3. Customization .
Configuring the syslog daemon (syslogd)
Configuration statements. .
Starting and stopping syslogd .
Offloading log files . .
Using syslogd for z/OS UNIX appl|cat|on programs .
Usage notes . .
Diagnosing syslogd conflguratlon problems .
Configuring TCPIP.DATA . . .
Use of TCPIP.DATA and /etc/resolv conf .
Creating TCPIP.DATA .
TCPIP.DATA statements .
Configuring PROFILE. TCPIP
Changing configuration information . .
Setting up TCP/IP operating charactenstlcs in PROFILE TCPIP
Setting up physical characteristics in PROFILE.TCPIP .
Setting up reserved port number definitions in PROFILE.TCPIP

Setting up SAF Server Access Authorization (SERVAUTH) (optlonal)

Configuring the local host table (optional).

Why configure a local host table?

Creating HOSTS.LOCAL site host table

Creating /etc/hosts . . .

Creating ETC.IPNODES and /etc/|pnodes
Verifying your configuration . . .

Verify TCPIP.DATA and TCPIPJOBNAME

Verify /etc/resolv.conf . . .

Verifying PROFILE.TCPIP Wlth netstat or onetstat

Verifying interfaces with PING and TRACERTE

z/0OS V1R4.0 CS: IP Configuration Guide

. 54
. 55
. 60
. 64
. 65
. 65
. 67
. 67
. 68
. 68
. 69
.72
. 75
. 76
. 76
. 76
. 76

.79
.79
.79
. 81
. 87
. 87
. 89
. 99
. 99

. 101
. 101
. 101
. 105
. 106
. 107
. 108
. 108
. 109
. 109
. 109
. 110
. 110
11
. 112
. 115
. 139
. 143
. 143
. 143
. 144
. 146
. 146
. 148
. 148
. 148
. 149
. 151

Verifying local name resolution with TESTSITE . . .
Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST
Verifying your X Windows System installation (Optional) .

Chapter 4. Routing
Routing terminology
General terms.
Interior Gateway Protocols (IGP)
Static versus dynamic routing .
The sample network
IPv4 static routing
Using static routing W|th OMPROUTE
IPv6 static routing
Using static routing with router advert|sements
Static routing configuration examples .
z/OS TCPCS4.
z/OS TCPCS?7.
IPv4 dynamic routing .
Routing daemons . . .
Migration from OROUTED to OMPROUTE .
Dynamic routing using OMPROUTE
Configuring OSPF and RIP .
IPv6 dynamic routing .
Verification of routing (Static and dynamlc) .
Verifying connections with NETSTAT, PING, and TRACERTE

Chapter 5. Virtual IP Addressing .
Terminology Coe
Introduction to VIPA S
Moving a VIPA (For TCP/IP outage) e e
Static VIPAs, Dynamic VIPAs (DVIPAs), Distributed DVIPAs .
Using static VIPAs . . .o
Configuring static VIPAs for a z/OS TCP/IP stack
Configuring static VIPAs for Enterprise Extender .
Considerations when using static VIPAs with IPv6
Planning for static VIPA Takeover and Takeback .
Using Dynamic VIPAs (DVIPAs) .
Configuring Dynamic VIPA (DVIPA) support
Planning for Dynamic VIPA Takeover .
Different application uses of IP addresses and DVIPAs
Configuring Dynamic VIPAs.
Configuring the Multiple Application- Instance Scenarlo
Configuring the Unique Application-Instance Scenario .
Choosing which form of Dynamic VIPA support to use .
Configuring Distributed DVIPAs — Sysplex Distributor .
Sysplex wide source VIPA . e
Sysplex Wide Security Associations.
Resolution of Dynamic VIPA conflicts . . .
Restart of the original VIPADEFINE TCP/IP after an outage
Movement of unique application-instance (BIND) .

Movement of a unique APF-authorized application instance (|octI)
Same Dynamic VIPA as VIPADEFINE and BIND() SIOCSVIPA ioctl, or

MODDVIPA utility. .
Dynamic VIPA creation results.
Other considerations
Mixture of types of Dynamlc VIPAs W|th|n subnets

. 152
. 152
. 153

. 155
. 155
. 155
. 156
. 157
. 157
. 158
. 160
. 161
. 162
. 162
. 162
. 163
. 165
. 165
. 165
. 166
. 179
. 205
. 205
. 206

. 209
. 209
. 209
.21
. 212
. 213
. 213
. 214
. 215
. 215
. 215
. 215
. 216
. 218
. 218
. 219
. 219
. 223
. 224
. 226
. 228
. 232
. 232
. 234
. 235

. 235

. 236
. 239
. 239

Contents

\'

MVS failure and Sysplex Failure Management. 239

Applications and Dynamic VIPAs. . . . N 22C 1)
Example of configuring Dynamic and Dlstnbuted VIPAs240
Verifying the DVIPAs in a sysplex . . . 2y |
Using NETSTAT support to verify Dynamic VIPA conflguratlon 2 Vi
Verifying Sysplex Distributor workload 246
Dynamic VIPAs and routing protocols247
OMPROUTE - Y
RIP (Routing Information Protocol) 2 X |
Chapter 6. TCP/IPinasysplex.251
Connectivity inasysplex. .22
Dynamic XCF. .2B2
Workload balancing. .260
Single systemwide image260
Horizontal growth .260
Ease of management .260
DNS/WLM C e e e e s 261
External IP workload balancmg e e e oo 26T
Sysplex Distributor .. .261
Part 2. Server applications 267
Chapter 7. Network connectivity with an SNA network 269
SNALINK LUO environment. . . . 21 61°)
Understanding the SNALINK enwronment e e e e o289
Configuring SNALINKLUO270
Stopping and starting SNALINK 273
Verifying connection status using NETSTAT DEVLINKS .o275
Controlling the SNALINK LUO interface with the MODIFY command275
SNALINK LUB.2 C e e e e oo oo 278
Configuring SNALINK LU6 2 e e e e e ... 276
Sample console - £
X.25 NCP Packet Switching Interface (NPSI) e e e e ... 278
Configuring X.25NPSI .279
NCPROUTE . . . e e285
Understanding the NCPROUTE enwronment . e286
Configuring NCPROUTE.29
Chapter 8. Accessing remote hosts using Telnet. 305
TN3270 Telnetserver .305
Getting started . . . R 06
Managing the Telnet server.309
Connection mode choices314
Connection security. . . X 1)
Mapping Objects to Client Ident|f|ers N 24
Mapping methods . . . e e e e e33
Advanced LU mapping toplcs . 7 v
Advanced application topics . . . e e e35
Device types and logmode conS|derat|ons G (G}
Using the Telnet Solicitor or USS Iogon panel362
Timers . . . e e . e366
Telnet dlagnostlcs o T (Y4
WorkLoad Manager for Telnet (WLM) N ¥ 472
Configuring the z/OS UNIX Telnet server (otelnetd) 374
Installation information. .374

Vi 2/0S V1R4.0 CS: IP Configuration Guide

Starting, stopping, and administration of z/OS UNIX Telnet .
otelnetd . . .
SMF record handllng . .

BPX.DAEMON considerations .

Kerberos.

Chapter 9. Transferring files using FTP
Configuring PROFILE.TCPIP for FTP .
Configuring ETC.SERVICES

Configuring /etc/syslog.conf.

Configuring the FTPD cataloged procedure
Security considerations for the FTP server .
Defining environment variables for the FTP server (optlonal)

Configuring TCPIP.DATA for FTP .

Configuring FTP.DATA.

Optionally configuring user- IeveI server optlons usmg FTPS RC
Data set attributes . .

Specifying attributes for new MVS data sets.

Translation of data .

Accounting . .
Configure the FTP server for SMF (opt|onal)

Customizing the FTP server for TLS

Customizing the FTP server for the GSSAPI

DB2® and JES ..

Configuring the optional FTP user eX|ts
The FTPSMFEX user exit
The FTCHKIP user exit
The FTCHKPWD user exit .

The FTCHKCMD user exit .
The FTCHKJES user exit
The FTPOSTPR user exit

Customizing the FTP-to-JES interface for JESINTERFACELeveI 2 (optlonal)

Configuring the FTP server for anonymous logins (optional) .
Creating an anonymous directory structure in the HFS .

Configure the Welcome Banner Page, Login, and Directory Message (optlonal)

Using magic cookies to represent information .

Configuring to send detailed login failure replies to an FTP CI|ent (optlonal)

Install the SQL query function (optional) and access the DB2 modules .

Accessing DB2 modules
FTP.DATA updates for SQL query funct|on
Trivial File Transfer Protocol (TFTP).
Considerations for z/OS .
Verification of FTP .
Verify server
Verify client. .
Verify FTP.DATA statements

Verifying anonymous, banner, and other opt|onal conflguratlon mformatlon

Verify FTP-JES interface (optional) .

Chapter 10. Domain Name System (DNS)
DNS and BIND overview . .
Domain names
Domain name servers .
Resolvers
Recommended readlng
Migrating to BIND 9.

Contents

. 375
. 378
. 381
. 381
. 381

. 383
. 384
. 385
. 385
. 385
. 386
. 388
. 389
. 389
. 390
. 390
. 391
. 393
. 393
. 393
. 394
. 395
. 396
. 396
. 396
. 396
. 397
. 397
. 398
. 398

399

. 400

. 402
405

. 405

406

. 406
. 408
. 408
. 408
. 408
. 410
. 410
. 411
. 412

414

. 414

. 417
. 417
. 418
. 419
. 422
. 424
. 424

Vii

viii

Performance issues.
Compatibility considerations.
Zone transfers
Queries . .
Dynamic update .
DNSSEC
TSIG .
DNS/WLM (Sysplex connectlon balancmg)
IPv6 support Ce e
Stack affinity .
NOTIFY .

Running the name server in BIND 9 and BIND 4 9 3 mode srmultaneously

Setting up and running the name server .

Configuring a master (primary) name server.
Configuring a slave name server .

Configuring a cache-only name server.

Configuring a stealth name server

Adding forwarding to your name server

Configuring host resolvers: Name server consrderatrons
Configuring host resolvers: onslookup considerations
Creating the syslog file

BIND 9 security considerations

Special considerations when using Dynamrc VIPA
Dynamic primary DNS movement using Dynamic VIPA.

Querying name servers .
nslookup command .

Diagnosing problems . .

Checking messages sent to the operators console

Checking the syslog messages

Using name server signals to diagnose BIND 4 9. 3 DNS problems
Using name server signals to diagnose BIND 9 DNS problems.
Using rndc to diagnose BIND 9 problems. .
Checking name server logging files to diagnose BIND 9 .

Using nslookup to diagnose problems .

Using dig to diagnose problems .

Advanced BIND 9 name server topics . .
Multiple TCP/IP stack (common INET) conS|derat|ons .
Dynamic update . e
Incremental zone transfers (IXFR)

Split DNS

TSIG . .

DNSSEC . . .

IPv6 support in BIND 9 . .

Advanced BIND 4.9.3—-Name server toplcs .
Connection optimization in a sysplex domain
Dynamic IP. . .

DNS-related RFCs .

Proposed standards

Proposed standards still under development
Other important RFCs about DNS implementation
Resource record types e
DNS and the Internet .

DNS operations . .

Other DNS-related RFCs

Chapter 11. Policy-Based Networking .

z/OS V1R4.0 CS: IP Configuration Guide

. 424
. 425
. 425
. 425
. 426
. 426
. 426
. 426
. 426
. 426
. 426

426

. 427
. 427
. 450
. 453
. 456
. 456
. 457
. 457
. 458
. 458
. 462
. 462
. 463
. 463
. 466
. 467
. 467
. 467
. 467
. 468
. 468
. 468
. 469
. 469
. 469
. 470
. 470
. 471
. 475
. 476
. 479
. 482
. 482
. 496
. 535
. 535
. 535
. 536
. 536
. 536
. 536
. 536

. 539

The role of policy .
Policy components overview
Policy Agent
RSVP Agent .
SNMP SLA subagent .
Intrusion Detection Services
Policy sample files .
Policy object model overview .
What kind of policy do you want?
QoS policy . Coe
IDS policy .
Where do you want to deflne your poI|C|es'7
LDAP server .
Overview of the obJect classes
Considerations for defining LDAP objects
Policy Agent retrieval of LDAP objects . .
Installing the schema definition on the LDAP server .
Using the sample LDAP objects .
Policy Agent common functions
Configuring the Policy Agent
Starting and stopping the Pollcy Agent
Refreshing policies . S
Verification .
Are the policies deflned correctly to the LDAP server’?
Are the policies defined correctly to the Policy Agent? .

Chapter 12. Quality of Service (QoS)
Differentiated Services (DS) policies
Integrated Services (RSVP) policies.
Sysplex Distributor (SD) policies .
QoS specific Policy Agent functions.

Sysplex distributor policy performance momtorlng conflguratlon

Type of Service (ToS) mapping configuration
Defining policies in a Policy Agent configuration file .
Differentiated Services policy examples
RSVP policy example . .
Sysplex Distributor policy example .
Defining policies using LDAP . .
Differentiated Services policy example .
RSVP policy example .
Sysplex Distributor routing policy example
RSVP. Co
Configuring the RSVP agent
Starting and stopping RSVP)
Service Level Agreement Performance Monltor MIB subagent .
Starting and stopping the SLA subagent .
Verification .
Are the policies mstalled in the TCP/IP stacks'7
Is the expected traffic mapping to the correct QoS poI|C|es'>

Are the Sysplex Distributor policy functions working correctly? .

Does anything need to be tuned?
Using PASEARCH .
Using the SLA subagent to monltor poI|C|es

Chapter 13. Intrusion Detection Services (IDS).
Scan policies . e

. 539
. 539
. 539
. 540
. 540
. 540
. 541
. 543
. 546
. 546
. 547
. 547
. 548
. 548
. 554
. 554
. 555
. 556
. 557
. 557
. 562
. 563
. 563
. 563
. 563

. 565
. 565
. 567
. 567
. 567
. 568
. 569
. 570
. 571
. 572
. 573
. 574
. 574
. 579
. 580
. 583
. 584
. 584
. 585
. 585
. 586
. 586
. 586
. 587
. 587
. 587
. 588

. 595
. 598

Contents

ix

X

Attack policies. .
Traffic Regulation (TR) poIrcres
TR TCP . .o
TR UDP .
Defining TR TCP poI|C|es usmg the Pollcy Agent
Defining IDS policies using LDAP .
IDS policy definition considerations .
IDS scan policy example .
IDS attack policy examples .
Traffic Regulation (TR) policy examples
Verification .
Are the correct poI|C|es actlve’?
Is the expected traffic mapping to the correct poIrcres’?
Are the IDS pollcy functions working correctly?
TRMD.
Running TRMD as a started task .
Running TRMD from the z/OS UNIX shell
Stopping TRMD . Ce e
TRMDSTAT.

Chapter 14. Network management
Overview of SNMP
Overview of z/OS CS SNMP version 3
Processing an SNMP request .
Deciding on SNMP security needs . . .
Step 1: Configure the SNMP agent (OSNMPD)
Provide TCP/IP profile statements

Provide community-based security and not|t|cat|on destlnatlon |nformat|on

Provide community-based and user-based security and notification
destination information .
Provide security product access to agent from subagents
Provide MIB object configuration information
Start the SNMP agent (OSNMPD)
Sample JCL procedure for starting OSNMPD from MVS .
Starting OSNMPD from z/OS UNIX . S
Step 2: Configure the SNMP commands . . .
Configure the NetView SNMP (SNMP) command
Configure the z/OS UNIX SNMP (osnmp) command.
Step 3: Configure the SNMP subagents . . .
Step 4: Configure the Open Systems Adapter (OSA) support
OSA/SF prerequisites . .
Required TCP/IP profile statements
Multiple TCP/IP instances considerations .
Step 5: Configure the trap forwarder daemon .
Provide PROFILE.TCPIP statements .
Provide trap forwarder configuration information .
Starting and stopping the trap forwarder daemon .

Chapter 15. Remote Print Server (LPD).

Configuring the Remote Print Server
Step 1: Configuring PROFILE.TCPIP for LPD .
Step 2: Updating the LPD server cataloged procedure .
Step 3: Updating the LPD server configuration data set
Step 4: Creating a banner page (optional)

Chapter 16. Remote procedure calls.

z/OS V1R4.0 CS: IP Configuration Guide

. 598
. 601
. 601
. 602
. 603
. 603
. 603
. 605
. 608
. 615
. 619
. 619
. 619
. 619
. 620
. 620
. 620
. 621
. 621

. 623
. 623
. 624
. 624
. 625
. 627
. 627

629

. 631
. 634
. 634
. 635
. 636
. 636
. 636
. 637
. 640
. 642
. 642
. 644
. 645
. 645
. 646
. 647
. 647
. 647

. 649
. 649
. 649
. 650
. 651
. 651

. 653

Configuring the PORTMAP address space . . .
Step 1: Configuring PROFILE.TCPIP for PORTMAP
Step 2: Updating the PORTMAP cataloged procedure .
Step 3: Defining the data set for well-known procedure names .
Starting the PORTMAP address space. . .

Configuring the z/OS UNIX PORTMAP address space -
Step 1: Configuring PROFILE.TCPIP for UNIX PORTMAP
Step 2: Updating the PORTMAP cataloged procedure .
Starting the PORTMAP address space. .

Configuring the NCS interface . .

Understanding the LLBD server .

Understanding the NRGLBD server . .

Step 1: Configuring PROFILE.TCPIP for NCS

Step 2: Updating the NRGLBD cataloged procedure.
Step 3: Updating the LLBD cataloged procedure .

Configuring the Network Database (NDB) System
Step 1: Updating the NDB setup sample job
Step 2: Running the NDB setup job . .
Step 3: Updating and installing the DB2 sample connect|on exrt routlne
Step 4: Updating the PORTS cataloged procedure .

Step 5: Updating the PORTC cataloged procedure .
Step 6: Creating the NDB clients . .o
Starting NDB . S

Chapter 17. Mail servers
Configuring the SMTP server .
Checklist for working within the SMTP enwronment
Configuration process . .
Configuring z/OS UNIX sendmail and popper .
Overview . .
Configuring z/OS UNIX sendmall
sendmail as a daemon
Configuring popper .

Chapter 18. TIMED daemon . .
Starting TIMED from z/OS shell .
Starting TIMED as a procedure

Chapter 19. SNTPD daemon .

Steps for starting SNTPD from the z/OS sheII
Steps for starting SNTPD as a procedure.
Stack affinity . e

Chapter 20. Remote Execution .
UNIX REXEC .
TSO REXEC . .
Configuring the TSO Remote Executlon server. . .
Step 1: Configuring PROFILE.TCPIP for TSO Remote Executlon server

Step 2: Determine whether Remote Execution client will send REXEC or

RSH commands .
Step 3: Permit remote users to access MVS resources (optronal)
Step 4: Update the TSO Remote Execution cataloged procedure
Step 5: Create a user exit routine (optional) . .o
Configuring the z/OS UNIX Remote Execution servers .
Installation information.

Contents

. 653
. 653
. 654
. 654
. 656
. 656
. 656
. 657
. 657
. 657
. 658
. 658
. 658
. 659
. 659
. 659
. 660
. 660

660

. 662
. 662
. 662
. 668

. 669
. 669
. 669
. 670
. 689
. 689
. 691
. 696
. 696

. 699
. 699
. 699

. 701
. 701
. 702
. 703

. 705
. 705
. 705
. 705

705

. 706
. 706
. 707
. 707
. 708
. 708

Xi

Configuring TSO and z/OS UNIX Remote Execution servers to use the same

port.T10
Chapter 21. Miscellaneous (MISC) server. 7183
Discard protocol .713
Echo protocol Y A K<
Character generator protocol Y A K<
Configuring the MISC server . . . A
Step 1: Configuring PROFILE. TCPIP for the MISC server. 714
Step 2: Updating the MISC server cataloged procedure (MISCSERV) . . 715
Part 3. Appendixes Lo Lo s T17
Appendix A. Setting up the inetd configurationfile. 719
Appendix B. TLS/SSL security721
Secure Socket Layer overview.72
Server authentication T22
Client authentication .724
Encryption algorithms e e e .. T24
Creating and managing keys and cert|f|cates at the server726
Overview . . e e e e e oL . T26
Using the gskkyman ut|I|ty Coe e e e e o128
Using RACF’s common keyring support e Y 4 7
Migrating an existing gskkyman key database to RACF Y £S 1°]
Creating and managing keys and certificates at the client. 740
Create a self-signed client certificate 740
Add server certificates to the client keyring 744
Appendix C. Express Logon Feature (ELF)749
Configuring RACF services for Express Logon. 750
Configuring the Express Logon components. 751
Configuring the HOD V5 TN3270 client 751
Configuring the z/OS TN3270 server . . . Y £ 572
Configuring the middle-tier TN3270 server (CS/2 example)T752
Configuring the Digital Certificate Access Server (DCAS) 752
AppendixD.UsingHCD .T757
Appendix E. Configuring the OROUTED server 769
Understanding OROUTED .769
Routing Information Protocol (RIP) 770
RIP Version2 . . . e 74
OROUTED m|scellaneous features e 4
RIP input/output filters. .772
RIP routes . . . T 4 ¢
OROUTED gateways e e e e oo TT8
Passive RIProutes. .773
External RIProutes. .773
Active gateways Y A 4<
OROUTED gateways summary e e e e e T4
OROUTED configuration process.774
Step 1: Configure the OROUTED profile T74
Step 2: Update configuration statements in PROFILE TCPIP Y 4 4
Step 3: Update the resolver configuration fileT778
Step 4: Update the OROUTED cataloged procedure (optlonal) Y 4]

Xii z/0S V1R4.0 CS: IP Configuration Guide

OROUTED cataloged procedure
Step 5: Specify the OROUTED port number in the SERVICES f|Ie
Step 6: Configure the gateways file or data set (optional) .
Syntax rules e e
Step 7: Configure and start syslogd
Step 8: RACF-authorize user IDs.
OROUTED parameters .
Specifying parameters.
Starting OROUTED.
Configuration examples .
Configuring a passive route.
Configuring an external route .
Configuring an active gateway.
Configuring a point-to-point link
Configuring a default route . .
Configuring ORouteD with Enterprise Extender
Configuring OROUTED with VIPA .
Configuring OROUTED to split traffic with VIPA .o
Configuring OROUTED with OSA-Express in QDIO mode
Configuring OROUTED with HiperSockets .o

Appendix F. Related protocol specmcatlons (RFCs)
Draft RFCs .

Appendix G. Information APARs .
Information APARs for IP documents
Information APARs for SNA documents
Other information APARs.

Appendix H. Accessibility .
Using assistive technologies
Keyboard navigation of the user mterface

Notices .
Trademarks.

Index .

Communicating Your Comments to IBM .

Contents

. 779
. 779
. 779
. 780
. 785
. 785
. 786
. 788
. 788
. 789
. 789
. 790
. 791
. 792
. 792
. 792
. 793
. 793
. 795
. 796

. 797
. 804

. 807
. 807
. 808
. 808

. 811
. 811
. 811

. 813
. 816

. 819

. 833

xiii

XiV z/0S V1R4.0 CS: IP Configuration Guide

Figures

1. Resolver related configuration files in z/OS UNIX and native MVS environments27
2.syslogd operation L . L. L. ..o B9
3. Generic server. . . . C e ebb
4. Server with affinity for a specrfrc transport provrder .o e Y 4
5. Example of binding an application to a specific transport provrder T oY 4
6. REXX program to switch TSO user to another TCP/IPstack.63
7. SYS1.PARMLIB(BPXPRMxx) for CINET .64
8. Syntax for TCP/IP message IDs ... T7
9. Elements of a secure TCP/IP deployment. . . . £
10. User identification, authentication, and access control for z/OS Communrcatrons Server
applications. < 0]
11. Stack Access Control overview.82
12. Port Access Control overview .83
13. Network Access Control example. . . . e < 15
14. IP filtering at the z/OS communication endpomt T < V4
15. Security protocols from a protocol layering perspective.88
16. e-business scenarios with Virtual Private Networks89
17.1PSec AH protocol header formats and security coverage90
18. IPSec ESP protocol header formats and security coverage91
19.IPSec and IKE overview L ..o 922
20. TN3270 SSL overview . . . e 22
21. Using multiple TN3270 ports to separate SSL and non- SSL trafflc e 1S)
22. Combining TN3270 SSL with IPSec client-to-firewall authenticaton95
23. TN3270 SSL and non-SSL traffic using a srngle TN3270 port [
24. FTP client and server TLS overview. . . . I * Y 4
25. Intrusion Detection Services overview. . . e 0]
26. Example of TCP/IP operating characteristics in PROFILE TCPIP T 4
27. Example of physical characteristics in PROFILE.TCPIP15
28. HiperSockets Virtual LAN13
29. HiperSockets multiple LANs e)
30. Candidate configuration for HlperSockets Accelerator e BT
31. HiperSockets Accelerator configuration .136
32. Example of reserved port number definitons .139
33. Sample network. . . P Kot
34. Static VIPA conflguratlon Coe 2
35. Sample DVIPA addressing in a sysplex enwronment 2 4
36. DVIPA takeover with SWSA .. .23
37. Sysplex Distributor with SWSA23
38. SNALINK environment interfaces ..270
39. SNADLC link . . . <
40. APPL statement for SNALINK e e e 278
41. SNALINK console example . . - £
42. APPL statement for SNALINK LU6. 2 A L. ... 277
43. Sample MVS system console messages on SNALINK LU6 2 address space startup 278
44. NCPROUTE environment . . . e e e e ..o o .286
45. NCPROUTE example confrguratron e e e s 2T
46. NCPROUTE data sets relationship. . . . e (0]0]
47. NCPROUTE configuration example of a passrve route < (0]
48. Configuring an active gateway .302
49. Telnet connectivity . . . G [0 1<)
50. Telnet parameter placement N (0
51. Telnet profiles and connections .313
52. Port 1023 connection characteristics .34

© Copyright IBM Corp. 2000, 2002 XV

53.
54.
55.
56.
57.
58.
59.
60.
. Policy components in z/OS CS .
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.

61

107

XVi

Mapping model .

Search method . .

Session initiation failures scenarios

Session ending scenarios .

Hierarchical naming tree

Name resolution to a sysplex .

Address association with mvsplex. mycorp com
Address association with myserver.

Basic policy objects

Complex policy conditions .
Rule-specific conditions and actlons
Reusable conditions and actions
Policy groups.

LDAP schema object class hlerarchy
Overview of SNMP support -
Configuration files for SNMP agent.
Configuration files for NetView SNMP.
Configuration files for osnmp .
Subagent connection to OSA/SF

Sender MUA transmits the message to sendmall

sendmail transmits the message to an intermediate SMTP server

A sendmail daemon receives the message from an SMTP client .

sendmail delivers the message to the local recipient

Receiver's MUA has direct access to the mail spool file . .
Receiver's MUA retrieves the message over a POP3 connection W|th a popper daemon

Adding applications to /etc/inetd.conf .
Setting traces in /etc/inetd.conf .

IBM Keys Management .

Create New Self-Signed Certlflcate

IBM Key Management -
Export/Import Key . .

Extract Certificate to a File.

HOD connection using a client certlflcate
HOD security properties.

Security Information

Extract a Certificate

Certificate was extracted

Creating a new CustomizedCAs. class
Default location displayed .

Add CA’s Certificate From a File .
Add CA’s Certificate From a File — contmued
Express Logon network .

Select processors . .
Work with attached channel paths .
Initiate the Define Channel Path dialog .
Add channel path . Coe
Specify Maximum Frame Size

Define the channel path access list
Channel path number FF defined

Work with attached control units.

Add the control unit(s)

Define a control unit .

Define it to the processor .

. Currently defined control unit .
108.

Define the devices.

z/OS V1R4.0 CS: IP Configuration Guide

. 325
. 333
. 355
. 356
. 419
. 484
. 486
. 487
. 541
. 543
. 544
. 545
. 545
. 546
. 551
. 624
. 627
. 637
. 640
. 646
. 689
. 690
. 690
. 690
. 691

691

. 719
. 719
. 741
. 741
. 742
. 742
. 743
. 743
. 744
. 745
. 745
. 745
. 746
. 746
. 746
. 747
. 749
. 757
. 757
. 758
. 758
. 759
. 760
. 760
. 761
. 761
. 762
. 762
. 763
. 763

109.
110.
111

115.
116.
117.
118.
119.
120.

121.
122.
123.

Empty device list
Define the devices for the control umt

. Add devices of type 1QD
112.
113.
114.

Define number of devices . .
Define device to operating system .
Select systems . .

Complete the definition .

Definition completed . .
Sample OROUTED conf|gurat|on f|Ie .
Sample portion of services file

Example commands to start multiple coples of OROUTED .

OROUTED configuration example .
Configuring an active gateway
Single VIPA configuration

Multiple VIPA configuration.

Figures

. 764
. 764
. 765
. 765
. 766
. 766
. 767
. 767
. 777
. 779
. 789
. 790
. 791
. 794
. 795

Xvii

XViii z/0S V1R4.0 CS: IP Configuration Guide

Tables

1. z/OS TCP/IP stack function support
2. TCP/IP configuration data sets.
3. Local definitions available to resolver
4. syslogd facilities .
5. Setting up default of OMVS segment
6. BPX.DAEMON . ..
7. Program control . .
8. How your own socket programs select a stack :
9. Interior Gateway Protocol characteristics
10. Multipath route limitations .
11. Route precedence .
12. Summary of Dynamic VIPA creatlon results
13. RIP route advertising rules.
14. NCPROUTE gateways summary
15. Client 1 example -
16. Client 2 example
17. Client 3 example . .
18. PORTCOMMAND scenarios . .
19. Settings that affect nslookup operation
20. DHCP server configuration.
21. Monitor control and monitor status object b|t values
22. Security advantages and disadvantages .
23. Summary of SMTP configuration statements .
24. Required and recommended m4 items
25. Sendmail permission table .
26. Frame size specification.
27. OROUTED gateways summary .
28. ORouteD parameters. .
29. IP information APARs.
30. SNA information APARs. .
31. Non-document information APARs .

© Copyright IBM Corp. 2000, 2002

.21

.27

. 40

. 46

. 48

. 49
. . 61
. 156
.17
. 192
. 236
. 288
. 290
. 333
. 334
. 335
. 387
. 465
. 497
. 591
. 626
. 682
. 693
. 695
. 759
. 774
. 788
. 807
. 808
. 809

Xix

XX z/OS V1R4.0 CS: IP Configuration Guide

About this document

This document contains guidance material to enable you to configure IP address
spaces, servers, and applications for zZ0OS™ Communications Server. This volume
is part of a two-volume set:

« [0S Communications Server: IP Configuration Guidd, which contains concepts
and guidance, explaining an overall approach to IP configuration.

* [0S Communications Server: IP Configuration Reference] which describes
parameters and options, and syntax of statements.

The information in this document supports both IPv6 and IPv4. Unless explicitly
noted, information describes IPv4 networking protocol. IPv6 support is qualified
within the text.

For detailed information about configuration-related data sets and statements, refer
to[z/0S Communications Server: IP Configuration Referencel

For detailed information about commands used during configuration, refer to
|Communications Server: IP System Administrator's Commands|

This document supports z/OS.e™.

Who should use this document

This document is intended for programmers and system administrators who are
familiar with TCP/IP, MVS™, z/OS UNIX®, and the Time Sharing Option Extensions
(TSO/E).

Where to find more information

This section contains:

* Pointers to information available on the Internet

» Information about licensed documentation

* Information about LookAt, the online message tool

* A set of tables that describes the documents in the zZOS Communications Server
(z/OS CS) library, along with related publications

Where to find related information on the Internet
z/0S
- |nttp://www.ibm.com/servers/eserver/zseries/zos/|
z/OS Internet Library
— |nttp://www.ibm.com/servers/eserver/zseries/zos/bkserv/|
IBM Communications Server product
- |nttp://www.software.ibm.com/network/commserver
IBM Communications Server product support
- |nttp://www.software.ibm.com/network/commserver/support/
IBM Systems Center publications
— |http://www.redbooks.ibm.com/
IBM Systems Center flashes
— |nttp://www-1.ibm.com/support/techdocs/atsmastr.nsf

© Copyright IBM Corp. 2000, 2002 XXi

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs

RFCs

- |nttp://www.ietf.org/rfc.html|
RFC drafts

- |nttp://www.ietf.org/ID.html|

Information about Web addresses can also be found in information APAR 1111334.

DNS web sites
For more information about DNS, see the following USENET news groups and
mailing:
USENET news groups:

comp.protocols.dns.bind
For BIND mailing lists, see:

 http://www.isc.org/ml-archives/

— BIND Users
- Subscribe by sending mail to bind-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

— BIND 9 Users (Note: This list may not be maintained indefinitely.)
- Subscribe by sending mail to bind9-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind9-users @isc.org.

For definitions of the terms and abbreviations used in this document, you can view
or download the latest IBM Glossary of Computing Terms at the following Web
address:

[http://www.ibm.com/ibm/terminologyl

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Accessing z/OS licensed documents on the Internet

xXii

z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:

[http://www.ibm.com/servers/resourcelink|

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
[rttp://www.ibm.com/servers/resourcelink|

To register for access to the z/OS licensed documents:
1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

z/OS V1R4.0 CS: IP Configuration Guide

http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink
www.ibm.com/servers/resourcelink

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations

LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:

[http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/|

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/0S
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

How to contact IBM service

For immediate assistance, visit this Web site:
Ihttp://www.software.ibm.com/network/commserver/support/|

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday — Friday, 8:00 a.m. —
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

If you would like to provide feedback on this publication, see |“Communicating Your|
[Comments to IBM” on page 833}

z/0OS Communications Server information

This section contains descriptions of the documents in the zZOS Communications
Server library.

z/OS Communications Server publications are available:

* Online at the z/OS Internet Library web page at
[http://www.ibm.com/servers/eserver/zseries/zos/bkserv|

About this document XXiii

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

* In softcopy on CD-ROM collections.

Softcopy information
Softcopy publications are available in the following collections:

Titles Order Description
Number

z/0S V1R4 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for zZOS V1R4, in both BookManager® and PDF
formats.

z/OS Software Products SK3T-4270 This CD includes, in both BookManager and PDF formats, the

Collection libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS V1R4 and Software SK3T-4271 This collection includes the libraries of z/OS (the element and

Products DVD Collection feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/0S Licensed Product Library | SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the

IBM 5/390® Redbooks™ S/390 platform and to host networking arranged into subject

Collection bookshelves.

z/OS Communications Server library

z/OS V1R4 Communications Server documents are available on the CD-ROM
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed documents can be
viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN® and in information APARs (info
APARs). See [Appendix G, “Information APARS” on page 807|for a list of the
documents and the info APARs associated with them.

« Info APARs for OS/390® documents are in the document called 0S/390 DOC
APAR and PTF ++HOLD Documentation which can be found at

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_0S390/|

BOOKS/IDDOCMST/CCONTENTS]|

* Info APARSs for z/OS documents are in the document called z/OS and z/OS.e

DOC APAR and PTF ++HOLD Documentation which can be found at

http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_0S390/|

BOOKS/ZIDOCMST/CCONTENTS|

Planning and migration:

Title Number Description

2/0S Communications Server] |GC31-8774 This document is intended to help you plan for SNA, whether you

SNA Migratiod are migrating from a previous version or installing SNA for the
first time. This document also identifies the optional and required
modifications needed to enable you to use the enhanced
functions provided with SNA.

2/0S Communications Server] |GC31-8773 This document is intended to help you plan for TCP/IP Services,

P Migratiod whether you are migrating from a previous version or installing IP
for the first time. This document also identifies the optional and
required modifications needed to enable you to use the
enhanced functions provided with TCP/IP Services.

XXiV z/0S V1R4.0 CS: IP Configuration Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title

Number

Description

2/0S Communications Server]

|sC31-8885|

IPv6 Network and Application|

Design Guidd

This document is a high-level introduction to IPv6. It describes
concepts of zZOS Communications Server’s support of IPv6,
coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning:

Title Number Description

2/0S Communications Server] |SC31-8775 This document describes the major concepts involved in

IP Configuration Guide| understanding and configuring an IP network. Familiarity with the
z/OS operating system, IP protocols, z/OS UNIX System
Services, and IBM Time Sharing Option (TSO) is recommended.
Use this document in conjunction with the|zZOS Communicationd
|Server: IP Configuration Reference

2/0S Communications Server| |SC31-8776 This document presents information for people who want to

IP Configuration Reference] administer and maintain IP. Use this document in conjunction
with the |z70S Communications Server: IP Configuration Guidel
The information in this document includes:
» TCP/IP configuration data sets
» Configuration statements
* Translation tables
* SMF records
» Protocol number and port assignments

z/0S Communications Server] |SC31-8777 This document presents the major concepts involved in

SNA Network Implementation| implementing an SNA network. Use this document in conjunction

Guidg with the [2/0S Communications Server: SNA Resource Definitior]
|Referencg|

z/0OS Communications Server] |SC31-8778 This document describes each SNA definition statement, start

SNA Resource Definitior] option, and macroinstruction for user tables. It also describes

Referencel NCP definition statements that affect SNA. Use this document in
conjunction with the |zZ0S Communications Server: SNA Network]
|Implementation Guide}

2/0S Communications Server] |SC31-8836 This document contains sample definitions to help you implement

SNA Resource Definitior] SNA functions in your networks, and includes sample major node

Samples definitions.

z/0S Communications Server] |SC31-8832 This guide provides information to help you install, configure,

AnyNet SNA over TCP/IA use, and diagnose SNA over TCP/IP.

2/0S Communications Server] |SC31-8831 This guide provides information to help you install, configure,

AnyNet Sockets over SNA| use, and diagnose sockets over SNA. It also provides information
to help you prepare application programs to use sockets over
SNA.

z/0S Communications Server] |SC31-8833 This document is for system programmers and network

IP Network Print Facility| administrators who need to prepare their network to route SNA,
JES2, or JES3 printer output to remote printers using TCP/IP
Services.

Operation:

About this document XXV

Title Number Description

2/0S Communications Server] |SC31-8780 This document describes how to use TCP/IP applications. It

IP User’s Guide and Commands| contains requests that allow a user to log on to a remote host
using Telnet, transfer data sets using FTP, send and receive
electronic mail, print on remote printers, and authenticate
network users.

2/0S Communications Server] |SC31-8781 This document describes the functions and commands helpful in

IP System Administrator’d configuring or monitoring your system. It contains system

Commandg administrator's commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP configuration
process.

2/0S Communications Server] |SC31-8779 This document serves as a reference for programmers and

SNA Operatiogl operators requiring detailed information about specific operator
commands.

2/0S Communications Server] | SX75-0124 This document contains essential information about SNA and IP

Quick Ffeferencg commands.

Customization:
Title Number Description
z/0S Communications Server] |LY43-0092 This document enables you to customize SNA, and includes the

SNA Customization|

following:
» Communication network management (CNM) routing table
* Logon-interpret routine requirements

» Logon manager installation-wide exit routine for the CLU
search exit

* TSO/SNA installation-wide exit routines
* SNA installation-wide exit routines

Writing application programs:

IP IMS Sockets Guidd

Title Number Description

2/0S Communications Server] |SC31-8788 This document describes the syntax and semantics of program

IP Application Programming| source code necessary to write your own application

Interface Guidg] programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own client
or server application. You can also use this document to adapt
your existing applications to communicate with each other using
sockets over TCP/IP.

2/0S Communications Server] |SC31-8807 This document is for programmers who want to set up, write

IP CICS Sockets Guide| application programs for, and diagnose problems with the socket
interface for CICS® using z/OS TCP/IP.

2/0S Communications Server] |SC31-8830 This document is for programmers who want application

programs that use the IMS™ TCP/IP application development
services provided by IBM’s TCP/IP Services.

XXVi

z/OS V1R4.0 CS: IP Configuration Guide

Title Number Description

2/0S Communications Server] |SC31-8787 This document describes the syntax and semantics of a set of

IP Programmer’s Referencd high-level application functions that you can use to program your
own applications in a TCP/IP environment. These functions
provide support for application facilities, such as user
authentication, distributed databases, distributed processing,
network management, and device sharing. Familiarity with the
z/OS operating system, TCP/IP protocols, and IBM Time Sharing
Option (TSO) is recommended.

2/0S Communications Server] |SC31-8829 This document describes how to use SNA macroinstructions to

SNA Programming send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program in
either the same or a different domain.

2/0S Communications Server] |SC31-8811 This document describes how to use the SNA LU 6.2 application

SNA Programmer’s LU 6.9 programming interface for host application programs. This

Guide document applies to programs that use only LU 6.2 sessions or
that use LU 6.2 sessions along with other session types. (Only
LU 6.2 sessions are covered in this document.)

z/0S Communications Server| |SC31-8810 This document provides reference material for the SNA LU 6.2

SNA Programmer’s LU 6.9 programming interface for host application programs.

Reference

z/0S Communications Server| |SC31-8808 This document describes how applications use the

CSM Guide communications storage manager.

z/0OS Communications Server] |SC31-8828 This document describes the Common Management Information

CMIP Services and Topolog)| Protocol (CMIP) programming interface for application

Agent Guide| programmers to use in coding CMIP application programs. The
document provides guide and reference information about CMIP
services and the SNA topology agent.

Diagnosis:

Title Number Description

z/0S Communications Server] |GC31-8782 This document explains how to diagnose TCP/IP problems and

IP Diagnosis] how to determine whether a specific problem is in the TCP/IP
product code. It explains how to gather information for and
describe problems to the IBM Software Support Center.

z/0S Communications Server] |LY43-0088 These documents help you identify an SNA problem, classify it,

SNA Diagnosis Vol 1) and collect information about it before you call the IBM Support

Techniques and Procedures|and | LY43-0089 Center. The information collected includes traces, dumps, and

z/0S Communications Server] other problem documentation.

SNA Diagnosis Vol 2, FFST

Dumps and the VIT]|

2/0S Communications Server] |LY43-0090 These documents describe SNA data areas and can be used to

SNA Data Areas Volume 1|and read an SNA dump. They are intended for IBM programming

2/0S Communications Server] |LY43-0091 service representatives and customer personnel who are

SNA Data Areas Volume 2 diagnosing problems with SNA.

Messages and codes:

About this document ~ XXVili

1P and SNA Codes)

Title Number Description
2/0S Communications Server] |SC31-8790 This document describes the ELM, IKT, IST, ISU, IUT, IVT, and
SNA Messageq USS messages. Other information in this document includes:

* Command and RU types in SNA messages

* Node and ID types in SNA messages

* Supplemental message-related information
2/0S Communications Server] |SC31-8783 This volume contains TCP/IP messages beginning with EZA.
IP Messages Volume 1 (EZA)
2/0S Communications Server] |SC31-8784 This volume contains TCP/IP messages beginning with EZB.
IP Messages Volume 2 (EZB)
2/0S Communications Server] |SC31-8785 This volume contains TCP/IP messages beginning with EZY.
IP Messages Volume 3 (EZY)
2/0S Communications Server] |SC31-8786 This volume contains TCP/IP messages beginning with EZZ and
IP Messages Volume 4 SNM.
(EZZ-SNM)
2/0S Communications Server] |SC31-8791 This document describes codes and other information that

appear in z/ZOS Communications Server messages.

APPC Application Suite:

Title Number Description
z/0OS Communications Server: SC31-8809 This documents the end-user interface (concepts, commands,
APPC Application Suite User’s and messages) for the AFTP, ANAME, and APING facilities of the
Guide APPC application suite. Although its primary audience is the end
user, administrators and application programmers may also find it
useful.
z/0S Communications Server: | SC31-8835 This document contains the information that administrators need
APPC Application Suite to configure the APPC application suite and to manage the
Administration APING, ANAME, AFTP, and A3270 servers.
z/0S Communications Server: | SC31-8834 This document provides the information application programmers
APPC Application Suite need to add the functions of the AFTP and ANAME APIs to their
Programming application programs.
Redbooks
The following Redbooks may help you as you implement zZOS Communications
Server.
Title Number
TCP/IP Tutorial and Technical Overview GG24-3376
SNA and TCP/IP Integration SG24-5291
IBM Communications Server for 0S/390 V2R10 TCP/IP Implementation Guide: SG24-5227
Volume 1: Configuration and Routing
IBM Communications Server for 0S/390 V2R10 TCP/IP Implementation Guide: SG24-5228
Volume 2: UNIX Applications
IBM Communications Server for 0S/390 V2R7 TCP/IP Implementation Guide: SG24-5229
Volume 3: MV'S Applications
Secureway Communications Server for 0S/390 V2R8 TCP/IP: Guide to SG24-5631
Enhancements
TCP/IP in a Sysplex SG24-5235
Managing OS/390 TCP/IP with SNMP SG24-5866

XXViii

z/OS V1R4.0 CS: IP Configuration Guide

Title Number

Security in OS/390-based TCP/IP Networks SG24-5383
IP Network Design Guide SG24-2580
Migrating Subarea Networks to an IP Infrastructure SG24-5957
IBM Communication Controller Migration Guide SG24-6298

Related information

For information about z/OS products, refer to|z/OS Information Roadmapg|

(SA22-7500). The Roadmap describes what level of documents are supplied with

each release of zZOS Communications Server, as well as describing each z/OS

publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA documents.

The table below lists documents that may be helpful to readers.

Title Number
|z/0S Security Server Firewall Technologies|
|S/390: OSA-Express Customer’s Guide and Reference SA22-7403
|z/0S JES2 Initialization and Tuning Guidd
[2/0S MVS Diagnosis: Procedures]
[2/0S MVS Diagnosis: Referencd
[z/0S MVS Diagnosis: Tools and Service Aids|
[2/0S Security Server LDAP Client Programming
[2/0S Security Server LDAP Server Administration and Usd
Understanding LDAP SG24-4986
1z/0S UNIX System Services Programming: Assembler Callable Services Reference| ||SA22-7803|
|z/0S UNIX System Services Command Reference| |§A22-7802|
[z/0S UNIX System Services User's Guidg
[z/0S UNIX System Services Planning
|2/0S MVS Using the Subsystem Interfacd
[z/0S C/C++ Run-Time Library Referencq
|z/0S Program Directory|

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001

ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995)

ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and Associates, 1997

ISBN 156592-222—-0

TCP/IP Tutorial and Technical Overview

GG24-3376

TCP/IP lllustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley
Publishing, 1994

ISBN 0-201-63346-9

TCP/IP lllustrated, Volume II: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP lllustrated, Volume Ill, W. Richard Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63495-3

[z/0S System Secure Sockets Layer Programming|

C24-5901

About this document

XXix

XXX

Determining if a publication is current
As needed, IBM updates its publications with new and changed information. For a

given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:

» At the end of a publication’s order number there is a dash followed by two digits,
often referred to as the dash level. A publication with a higher dash level is more
current than one with a lower dash level. For example, in the publication order
number GC28-1747-07, the dash level 07 means that the publication is more
current than previous levels, such as 05 or 04.

» If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

» To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

z/OS V1R4.0 CS: IP Configuration Guide

Summary of changes

Summary of changes
for SC31-8775-02
z/0OS Version 1 Release 4

This document contains information previously presented in SC31-8775-01, which
supports z/OS Version 1 Release 2. The information in this document supports both
IPv6 and IPv4. Unless explicitly noted, information describes IPv4 networking
protocol. IPv6 support is qualified within the text.

New information

z/0S msys for Setup, see [zZ/OS msys for Setup and Wizard” on page 6}
Access control, see |“System resource protection” on page 7QI
Transparent fault-tolerance for failed or stopped IPv4 devices or IPv6 interfaces,

see [Interface-layer fault-tolerance for local area networks (interface-takeoved
[function)” on page 137]

Using a single sysplex wide Dynamic VIPA (DVIPA) as the source IP address for
TCP applications, and having the sysplex stacks collaborate on assigning
ephemeral ports to prevent duplicate connection 4-tuples (combination of source
and destination IP addresses and ports), see f‘SyspIex wide source VIPA” or’]
page 226
Sysplex Wide Security Associations (SWSA), see [‘Sysplex Wide Security|
[Associations” on page 228
FTP, see[“Translation of data” on page 393 and [‘Configuring the optional FTP|
[user exits” on page 396|

Simple Network Time Protocol (SNTP), see [Chapter 19, “SNTPD daemon” on|

The following areas contain new information pertaining to IPv6 support:

— z/OS TCP/IP stack-related functions and the level of support provided in an
IPv6 network, see ['z/OS TCP/IP stack function support” on page 3|

Sample BPXPRMxx definitions needed for IPv6 support, see[*Defining TCP/IP|
[as a UNIX System Services physical file system (PFS)” on page 50|

— Resolver support, see ['Understanding resolvers” on page 12| [‘Configuration|

files for TCP/IP applications” on page 26, and|“Configuring the local host table|

(optional)” on page 143|

— Autoconfiguring addresses for an interface using information provided by IPv6
routers, see ['IPv6 considerations: Stateless autoconfiguration and duplicate]
[address detection” on page 137

— Routing in an IPv6 network, see [Chapter 4, “Routing” on page 155}

— FTP, see[‘Security considerations for the FTP server’ on page 386,

— DNS, see [Chapter 10, “Domain Name System (DNS)” on page 417,

— inetd, otelnetd, orexecd, and orshd, see|Appendix A, “Setting up the inetd|
[configuration file” on page 719,

An appendix with z/OS product accessibility information has been added.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

© Copyright IBM Corp. 2000, 2002 XXXi

XXXii

Starting with z/OS V1R4, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

This document supports z/OS.e.

Summary of changes
for SC31-8775-01
2z/0OS Version 1 Release 2

This document contains information previously presented in SC31-8775-00, which
supports z/OS Version 1 Release 1.

New information

+ Managed System Infrastructure for Setup, see[z/OS msys for Setup and Wizard’|
_n page 6

» SMF recording enhancements, see [Accounting - SMF records” on page 40|

+ OSA-Express Token Ring support, see [‘Setting up physical characteristics in|
[PROFILE.TCPIP” on page 115

+ Connection load balancing, see|‘Connection load balancing using Sysplex|
[Distributor in a network with CISCO routers” on page 264

+ New chapter for Security, see [Chapter 2, “Security” on page 79|
* New chaiter for TCP/IP in a Sysplex, see [Chapter 6, “TCP/IP in a sysplex” on|

+ HiperSockets, see [‘HiperSockets concepts and connectivity” on page 130

+ HiperSockets Accelerator, see [‘Efficient routing using HiperSockets Accelerator’]

+ OROUTED to OMPROUTE migration, see [‘Migration from OROUTED to|

[OMPROUTE” on page 165|

BIND 9-Based DNS, see|Chapter 10, “Domain Name System (DNS)” on|

+ New chapter for Quality of Service, see [Chapter 12, “Quality of Service (QoS)” on|

« New chapter for Intrusion Detection Services, see [Chapter 13, “Intrusion|
[Detection Services (IDS)” on page 595|

« SMTP exit to filter unwanted mail, see [Chapter 17, “Mail servers” on page 669

« New appendix for SSL/TLS, see|Appendix B, “TLS/SSL security” on page 721|

+ New appendix for Express Logon, see|Appendix C, “Express Logon Feature|
[(ELF)” on page 749

+ New appendix for using HCD to configure IQD CHPIDs, see|Appendix D, “Using|
[HCD” on page 757|

Changed information

* Resolver enhancements

* VMCF/TNF sample start procedure (EZAZSSI)

« OMPROUTE to allow RIP1 and RIP2 packets over the same interface
* Replaceable static routes

* OSPF MD5 authentication

z/OS V1R4.0 CS: IP Configuration Guide

* Telnet enhancements

* FTP enhancements

* Netstat enhancements

» Sysplex Distributor policy enhancements
* Policy Agent enhancements

» Application driven policy classification

» Virtual LAN priority tagging

Deleted information
* Kerberos

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SC31-8775-00
z/0OS Version 1 Release 1

This document contains information also presented in 0S/390 V2R10 IBM
Communications Server: IP Configuration Guide.

New information

+ Added new information in [f'UNIX System Services security considerations” on|
. This information was removed from IP Migration.

+ Added a new section, ['Defining TCP/IP as a UNIX System Services physical file]
[system (PES)” on page 50| This information was removed from IP Migration.

+ Added information to section, [‘Making SYS1.PARMLIB changes” on page 69
This information was removed from IP Migration.

Summary of changes XXXIii

XXXiV z/0OS V1R4.0 CS: IP Configuration Guide

Part 1. Base TCP/IP system

© Copyright IBM Corp. 2000, 2002

2 2/0S V1R4.0 CS: IP Configuration Guide

Chapter 1. Configuration overview

The objective of this chapter is to help you be better prepared for installation related
activities. It is important to understand the terms, relationships, and dependencies
presented in this chapter as a prerequisite to installation and customization.

After reading this chapter, you will be familiar with:

» z/OS TCP/IP stack function support

» z/OS Managed System Infrastructure for Setup (z/OS msys for Setup)
» z/OS UNIX System Services concepts

+ Differences between HFS files and MVS data sets

» Setting up a resolver address space

» Configuration files and their search orders

* MVS Considerations

* Accounting and security issues for the more commonly used daemons
» Defining TCP/IP as a UNIX System Services physical file system (PFS)
* Performance considerations

» Considerations for multiple instances of TCP/IP

» Enterprise Extender considerations

» Virtual IP Address (VIPA) considerations

» The steps required before starting TCP/IP

z/OS TCP/IP stack function support

summarizes z/OS TCP/IP stack-related functions and the level of support
provided in an IPv6 network. It is anticipated that many more of these functions will
be enabled for IPv6 support in subsequent releases of zZOS Communications
Server.

In other locations where these functions are described in detail, there might be no
statement of support on an IPv6 network. Consult this table to determine whether a
given function is applicable to IPv6.

For more information on the related configuration statements for a particular
function, refer to[z/0S Communications Server: IP Configuration Reference

Table 1. z/OS TCP/IP stack function support

z/OS TCP/IP stack IPv4 IPv6 Comments

function support? support?

Link-layer device IPv4 devices are defined with the
support DEVICE and LINK configuration

statements. In IPv6, interfaces are
defined with the INTERFACE
statement.

© Copyright IBM Corp. 2000, 2002 3

Table 1. z/OS TCP/IP stack function support (continued)

z/OS TCP/IP stack |IPv4 IPv6 Comments
function support? support?
Ethernet LAN Y Y To define an MPCIPA device for
connectivity using IPv4, use the DEVICE statement
OSA-Express in with the MPCIPA parameter and the
QDIO mode LINK statement with the IPAQENET
parameter. For IPv6 traffic,
OSA-Express QDIO fast ethernet
and gigabit ethernet support is
configured using an INTERFACE
statement of type IPAQENETS6. This
is the only DLC that currently
supports IPv6.
Related configuration statements:
* DEVICE and LINK (MPCIPA
devices)
« HOME
* INTERFACE (IPAQENET6
interfaces)
Virtual IP
addressing support
Virtual Y Y With IPv4, a static virtual device is
device/interface configured using DEVICE and LINK
configuration statements with the VIRTUAL
parameter. An IPv6 virtual interface
is configured with an INTERFACE
statement of type VIRTUALSG.
Related configuration statements:
* DEVICE and LINK (VIRTUAL
devices)
« HOME
* INTERFACE (VIRTUAL6
interfaces)
Sysplex support Y N Related configuration statements:
* VIPADYNAMIC
* IPCONFIG
IP routing functions
Dynamic routing - Y N
OSPF and RIP
Dynamic routing - N Y For information on
AutoConfiguration AutoConfiguration, see W
considerations: Stateless|
lautoconfiguration and duplicate]
laddress detection” on page 137}
Static route Y Y Related configuration statements:
configuration using . BEGINROUTES
BEGINROUTES
statement
Static route Y N Related configuration statements:

configuration using
GATEWAY statement

* GATEWAY

z/OS V1R4.0 CS: IP Configuration Guide

Table 1. z/OS TCP/IP stack function support (continued)

z/OS TCP/IP stack |IPv4 IPv6 Comments
function support? support?
Multipath routing Y Y Related configuration statements:
groups * |IPCONFIG
» IPCONFIG6
Miscellaneous stack
functions
Path MTU discovery |Y Y Path MTU discovery is mandatory in
IPv6.
Related configuration statements:
» IPCONFIG
» IPCONFIG6
Configurable device |Y Y Set with the DevRetryDuration
or interface recovery keyword on the IPCONFIG
interval statement.
Related configuration statements:
+ IPCONFIG
» IPCONFIG6
Link-layer address Y Y In IPv4, performed using Address
resolution Resolution Protocol (ARP). In IPv6,
performed using neighbor discovery
protocol.
Related configuration statements:
» DEVICE and LINK (LAN Channel
Station and OSA devices)
* INTERFACE (IPAQENET6
interfaces)
ARP/Neighbor cache |Y Y Use the V TCPIP,,PURGECACHE
PURGE capability command. For information, see
2/0S Communications Server: IP|
System Administrator's Commands)
Datagram forwarding |Y Y Related configuration statements:
enable/disable - IPCONFIG
» IPCONFIG6
Transport-layer
functions
Fast response cache |Y N
accelerator
Enterprise extender |Y N
Server-BIND control |Y Y Related configuration statements:
* PORT
UDP Checksum Y N UDP checksum is required when

disablement option

operating over IPv6.

Related configuration statements:
+ UDPCONFIG

Chapter 1. Configuration overview 9

Table 1. z/OS TCP/IP stack function support (continued)

services

z/OS TCP/IP stack |IPv4 IPv6 Comments

function support? support?

Network

management and

accounting

functions

SNMP Y

Policy-based Y

networking

SMF Y Y Type 118 records do not support
IPv6 addresses. IPv6 support in
type 119 records is being phased in.
Currently, only the following records
provide IPv6 support:
» TCP connection initiation
» TCP connection termination
» UDP socket close
e FTP client transfer completion
* FTP server transfer completion
* FTP server logon failure
Related configuration statements:
* SMFCONFIG

Security functions For an overview of security
services, see [Chapter 2, “Security’]
|on page 79|

IPSec Y N Related configuration statements:
* IPCONFIG

IP filtering Y N

Network access Y N Related configuration statements:

control - NETACCESS

Stack and port Y Y Related configuration statements:

access control « PORT
« DELETE

Intrusion detection Y N

z/OS msys for Setup and Wizard

Wizard

IBM provides a Web-based wizard called the z/OS IP Configuration Wizard. Use it
at any time to configure a single stack, with simple instances of OMPROUTE, FTP,
and TN3270 servers, and with all device types, including static VIPA. If you finish
using the wizard and complete the tasks defined in the output checklist, you will be
ready to use z/OS TCP/IP to communicate with other hosts in your network. The
wizard can be found at: |http:// www.ibm.com/eserver/zseries/zos/wizards/,

6 2/0S V1R4.0 CS: IP Configuration Guide

http:// www.ibm.com/eserver/zseries/zos/wizards/

z/OS msys for Setup

A z/OS system is controlled using a multitude of settings, such as parmlib
members, /etc files for Unix System Services, or the RACF® database, which are
governed by different access methods. There is not a consistent representation of
the configuration data; rather system administrators must keep track of various
configuration data sets with varying semantics and syntax. While this renders z/OS
systems highly flexible, at the same time it makes them complex and laborious to
maintain.

Managed System Infrastructure for Setup (Msys for Setup) addresses these
difficulties by establishing a central directory for product configuration data and a
single interface to this directory. System administrators using msys will configure
z/OS by way of GUI panels presented by the msys Windows NT® or Windows®
2000 application. Multiple products can be configured through the same msys
application. The configuration data will be collected and stored together as a
common entity within an LDAP server. When directed by the system administrator,
msys code running on z/OS will extract the configuration data stored in LDAP and
produce the various configuration data sets on the z/OS system. This removes the
system administrator from the details of the actual configuration statements,
parameters and data set locations.

Msys for Setup consists of a collection of GUI panels that run on a Windows NT or
Windows 2000 workstation and is connected through IP to an LDAP directory and
to an MVS driving system. Msys for Setup provides the infrastructure for an msys
exploiter to provide the user the following functionality:

» Refresh/Priming processing - parses a customer’s existing configuration files and
stores this configuration data, transformed into a tree structure, into an LDAP
directory.

» Customization - reads the Refresh data stored in LDAP and populates the data
fields on the GUI panels from this Refresh data. The data can then be changed
by the system administrator as the panels are navigated. It is also likely that no
Refresh step was done, and the panels are presented with either default data or
no data. When customization changes are completed, the data is transformed
into a tree structure and stored into the LDAP directory.

» Update Processing - after the configuration customization is complete, the
administrator can make the 'Perform update’ selection. Msys for Setup sends an
FTP batch job to the mainframe driving system. Msys for Setup invokes a series
of the msys exploiter's Java"" methods that ultimately result in updating
msys-created configuration files or creating new configuration files from the new
customized data that is extracted from the LDAP directory.

« Commit processing - after update processing is complete, the administrator can
make the "Commit update’ selection. If update processing resulted in the creation
or modification of temporary msys-created configuration files, those temporary
files are copied into more permanent configuration files.

When using TCP/IP’s msys for Setup, you will be prompted by GUI panels for
customization information, which is then stored in an LDAP directory. Only a subset
of TCP/IP’s total configuration is supported using msys for Setup.

TCP/IP offers two different levels of service in msys:
» Customization and update processing only
» Refresh, customization, update, and commit processing

Chapter 1. Configuration overview 7

8

Included in the customization and update processing only level of service is support
for all network devices, routing selections of OSPF or RIP, or use of default routers
and static routes. The TN3270 server can be configured in a basic setup, or in
advanced mode that supports nearly all TN3270 options. The FTP server is
configured to use all defaults. Update processing creates TCP/IP configuration files
in a PDS of your choice. The configuration files created are those typically referred
to as TCPIP.DATA, PROFILE.TCPIP, and OMPROUTE.CONF, as well as TN3270
and PORTS. Supported configuration statements are listed below:

» For TCPIP.DATA

DATASETPREFIX
DOMAINORIGIN
HOSTNAME
NSINTERADDR
TCPIPJOBNAME

Defaults are used for all other configuration statements.
» For PROFILE.TCPIP

ATMARPSV

ATMLIS

ATMPVC

AUTOLOG / ENDAUTOLOG
BEGINROUTES / ENDROUTES and ROUTE
DEVICE

HOME

LINK

START

TCPCONFIG RESTRICTLOWPORTS
TRANSLATE

UDPCONFIG RESTRICTLOWPORTS

Defaults are used for all other configuration statements.
+ For OMPROUTE

INTERFACE
OSPF_INTERFACE
RIP_INTERFACE

Defaults are used for all other configuration statements.
* For TN3270

ALLOWAPPL
BEGINVTAM / ENDVTAM
CLIENTAUTH
CONNTYPE
DEFAULTAPPL
DEFAULTLUS
DEFAULTLUSSPEC
DEFAULTPRT
DEFAULTPRTSPEC
DESTIPGROUP
DROPASSOCPRINTER
ENCRYPTION
EXPRESSLOGON

z/OS V1R4.0 CS: IP Configuration Guide

HNGROUP

INACTIVE

IPGROUP

KEYRING

LINEMODEAPPL

LINKGROUP

LUGROUP

LUMAP

LUSESSIONPEND

MSGO07

PORT / SECUREPORT
PRTDEFAULTAPPL
PRTGROUP

PRTMAP

SCANINTERVAL / TIMEMARK
SMFINIT / SMFTERM
SNAEXT

TELNETDEVICE
TELNETGLOBALS / ENDTELNETGLOBALS
TELNETPARMS / ENDTELNETPARMS
TKOSPECLU

USERGROUP

USSTCP

Defaults are used for all other configuration statements.
* For PORTS

PORT
PORTRANGE

The refresh, customization, update, and commit processing level of service supports
only port reservations. Refresh processing is optional, but useful if the
administrator’'s port reservations are in their own configuration file. If no refresh is
performed, customization begins with default port reservations. This TCP/IP service
can accept port reservations requested by other msys for Setup services such as
LDAP. For example, during customization of the LDAP msys for Setup service, the
administrator might be asked which port LDAP should use. When the administrator
is done customizing the LDAP service, the TCP/IP service would receive a request
for that port. Update processing creates or modifies a temporary PORTS
configuration file and reserves ports requested by other msys for Setup services.
Commit processing copies this temporary file into a more permanent msys PORTS
configuration file and can also modify the user’s active PROFILE.TCPIP
configuration file to use the msys PORTS file. Supported configuration statements
are listed below:

e For PORTS

PORT
PORTRANGE

For more detailed information on z/OS msys for Setup, refer to|z/0OS Managea

[System Infrastructure for Setup User’s Guide|

Chapter 1. Configuration overview 9

z/OS UNIX System Services (z/OS UNIX) concepts

Beginning with MVS/ESA™ Version 4.3 a new type of application program interface
was added to the MVS platform with the intent of integrating a UNIX operating
system into MVS. Both a C programming API and an interactive environment called
the shell were defined to interoperate with UNIX-style files, called Hierarchical File
Systems (HFS). Over time, other organizations developed approaches to working
with UNIX on various platforms until an organization named X/Open documented
standards of what to implement for UNIX interfaces in a series of guides published
as the X/Open Portability Guides (XPG). X/Open now owns the term UNIX and
certifies different implementations of UNIX according to the UNIX definitions
contained in XPG 4.2. In 1996, 0S/390 OpenEdition® was awarded UNIX 95 brand
certification, thus confirming that it is compliant with all current open industry
standards.

Note: In 1998, IBM changed the name OS/390 OpenEdition to OS/390 UNIX
System Services.

z/OS UNIX System Services or z/OS UNIX is the z/OS or MVS implementation of
UNIX as defined by X/Open in the XPG 4.2. z/OS UNIX coexists with traditional
MVS functions and traditional MVS file types (partitioned data sets, sequential files,
and so on). It concurrently allows access to HFS files and to UNIX utilities and
commands by means of application programming interfaces (APIs) and the
interactive SHELL environment. MVS offers two variants of the UNIX SHELL
environment:

* The OMVS shell, much like a native UNIX environment

* The ISHELL, an ISPF interface with access to menu-driven command interfaces

With the APls, programs can run in any environment including batch jobs, in jobs
submitted by TSO/E interactive users, and in most other started tasks, or in any
other MVS application task environment. The programs can request:

* Only MVS services
* Only z/OS UNIX services
* Both MVS and z/OS UNIX services

The shell interface is an execution environment analogous to TSO/E, with a
programming language of shell commands analogous to Restructured eXtended
eXecutor (REXX) language. The shell support consists of:

* Programs that are run interactively by shell users
» Shell commands and scripts that are run interactively by shell users
» Shell commands and scripts that are run as batch jobs

Prior to OS/390 V2R5, OS/390 UNIX required APPC/MVS for programs issuing the
fork() or spawn() function of OpenEdition callable services. APPC/MVS is no longer
required for this purpose. Forked and spawned address spaces are now
implemented in z/OS for UNIX processing by the Work Load Manager (WLM)
component of MVS.

For a fork(), the system copies one process, called the parent process, into a new

process, called the child process, and places the child process in a new address
space, the forked address space.

10 2/0S V1R4.0 CS: IP Configuration Guide

Spawn() also starts a new process in a new address space. Unlike a fork(), in a
spawn() call the parent process specifies a name of a program to start the child
process.

The types of processes can be:
» User processes, which are associated with a user

» Daemon processes, which perform continuous or periodic functions, such as a
Web server

Daemons are programs that are typically started when the operating system is
initialized and remain active to perform standard services. Some programs that
initialize processes for users are considered daemons, even though these
daemons are not long-running processes. Examples of daemons provided by
z/OS UNIX are cron, which starts applications at specific times, and inetd, which
starts applications on demand.

A user or daemon process can have one or more threads. A thread is a single flow
of control within a process. Application programmers create multiple threads to
structure an application in independent sections that can run in parallel for more
efficient use of system resources.

Overview of data sets and HFS files

Data set and file are comparable terms. If you are familiar with MVS, you probably
use the term data set to describe a unit of data storage. If you are familiar with
AIX® or UNIX, you probably use the term file to describe a named set of records
stored or processed as a unit. In the TCP/IP environment, in addition to the
traditional MVS data set organizations (such as sequential, partitioned) the z/OS
UNIX files are arranged in a Hierarchical File System (HFS) and are called HFS
files.

Some data sets and HFS files have special importance because of their function.
For example, certain data sets and HFS files are used when configuring the TCP/IP
environment. Other data sets are used by the Telnet server (Telnet daemon) when
performing specific communication functions. See[Table 2 on page 21| for
descriptions of the data sets and HFS files necessary for configuring the TCP/IP
environment and the search orders used to find them. A search order can include
both HFS files and data sets, and these data sets and HFS files will be collectively
referred to as the configuration files in this section.

Note: Not all applications support HFS files.

Hierarchical File System concepts
The Hierarchical File System lets you set up a file hierarchy that consists of:

» HFS files, which contain data or programs. A file containing a load module, shell
script, or REXX program is called an executable file. Files are kept in directories.

» Directories that contain files, other directories, or both. Directories are arranged
hierarchically, in a structure that resembles an upside down tree, with root
directory at the top and the branches at the bottom. The root is the first directory
for the file system at the peak of the tree and is designated by a slash (/).

» Additional local or remote file systems that are mounted on directories of the
root file system or of additional file systems.

» Lastly, the HFS also includes named pipes, links, and other UNIX items. One of
these is character special files like /dev/console that are used by applications like

Chapter 1. Configuration overview 11

syslogd. Refer to [zZ0S UNIX System Services Planning for more information
about UNIX items like character special files.

To the z/OS system, the file hierarchy is a collection of HFS data sets. Each HFS
data set is a mountable file system. The root file system is the first file system
mounted. Subsequent file systems can be logically mounted on a directory within
the root file system or on a directory within any mounted file system.

Except for the direction of the slashes, the Hierarchical File System is similar to a
Disk Operating System (DOS) or an 0S/2°® file system.

Each mountable file system resides in an HFS data set on direct access storage.
DFSMS/MVS® manages the HFS data sets and the physical files.

The root file system
The root system is the starting point for the overall HFS file structure. It contains the

root directory and any related HFS files or subdirectories. The root file system is
created as part of the installation process, either the SERVERPAC method or
CPBDO, when you install z/OS.

Understanding

resolvers

The resolver acts on behalf of programs as a client that accesses name servers for
name-to-address or address-to-name resolution. The resolver can also be used to
provide protocol and services information. To resolve the query for the requesting
program, the resolver can access available name servers, use local definitions (for
example, /etc/resolv.conf, /etc/hosts, /etc/ipnodes, HOSTS.SITEINFO,
HOSTS.ADDRINFO, or ETC.IPNODES), or use a combination of both. How and if
the resolver uses name servers is controlled by TCPIP.DATA statements (resolver
directives).

The resolver address space must be started before any application or TCP/IP stack
resolver calls can occur. When the resolver address space starts, it reads an
optional resolver setup data set pointed to by the SETUP DD card in the resolver
JCL procedure. This resolver setup data set enables the following capabilities:

» Specification of a TCPIP.DATA file that contains global settings for the MVS
image. The GLOBALTCPIPDATA setup statement identifies the file.

The global TCPIP.DATA file is being provided to allow the administrator to retain
control of which resolver statements are used for name resolution, and to
eliminate the complexity of attempting to merge resolver statements from multiple
files in a predictable and useful manner.

This global TCPIP.DATA file, when specified, will become the first TCPIP.DATA
file read regardless of the Socket API library being used. Any parameters found
in this file will be global settings for this MVS image. If a global TCPIP.DATA file
has been specified then all resolver statements will only be obtained from this
file. Any of the resolver statements specified in files lower in the search order will
be ignored.

Resolver statements are those required by the resolver to process queries.
Resolver TCPIP.DATA statements are:

— DomainOrigin/Domain

— NSinterAddr/NameServer

— NSPortAddr

— ResolveVia

— ResolverTimeOut

12 2/0S V1R4.0 CS: IP Configuration Guide

— ResolverUDPRetries
— Search
— SortList

Other statements not specified in the global TCPIP.DATA file can still be located
in one of the TCPIP.DATA files in the search order for each socket API type. For
example, if TCPIPJOBNAME is not specified in the global TCPIP.DATA file, the
resolver library will locate the next available file in the search order (the search
will depend on the socket APl being used) and attempt to find the
TCPIPJOBNAME there. Note that once a file is found beyond the global
TCPIP.DATA file the searching stops. For example, if the TCPIP.DATA file was
found by way of the SYSTCPD DD card and no TCPIPJOBNAME was specified
in this file, then the normal defaults for TCPIPJOBNAME are applied (for
example, TCPIP if the native MVS API search order is used, or a null character if
the z/0OS UNIX API search order is used). In effect, you can concatenate up to
two TCPIP.DATA files with this approach. Note that the search order for the local
hosts table (HOSTS.xxxxINFO, ETC.IPNODES, /etc/hosts, or /etc/ipnodes)
remains the same. Depending on the application environment, either the native
MVS or z/OS UNIX search order will be in effect.

The ability to specify a global TCPIP.DATA file has several advantages. The
administrator can decide on which options are global for the installation and
which can be specified on an application basis. For example, it is anticipated that
most administrators will prefer to control the resolver statements in TCPIP.DATA
at a global level. However, it is quite unlikely that they will want a global setting
of the TRACE RESOLVER option. This option would typically not be specified on
a global TCPIP.DATA file, rather it would get picked up from the first file found in
the search order after the global TCPIP.DATA file. This would allow application
programmers to continue to turn on the option. Another advantage of this
approach is that the administrator may not be aware of all the private
TCPIP.DATA files that may be in use on their systems. This approach allows
them to implement global options gradually versus an all or nothing approach.

Also, note that this approach lends itself to a multistack (CINET) environment.
The administrator can still set up a global TCPIP.DATA file with the global options
for this MVS image and omit specifying the TCPIPJOBNAME keyword. The
TCPIPJOBNAME keyword would then be located using the appropriate search
order. However, using the global TCPIP.DATA file with CINET requires that the
resolver TCPIP.DATA statements are able to be used by all stacks. For example,
the IP addresses specified by the NameServer statement must be accessible
from all stacks. If they are not, then the GLOBALTCPIPDATA file should not be
used and you should continue with multiple TCPIP.DATA data sets.

Support for user specified default TCPIP.DATA file. The DEFAULTTCPIPDATA
setup statement identifies the file.

The user can specify the file to be used as the final location in the search order
instead of TCPIP.TCPIP.DATA. This can be used as the replacement for the
TCP/IP V3R2 EZAPPRFX sample installation job.

Specification of the local host file search order for IPv4 and IPv6 name queries.
The COMMONSEARCH setup statement identifies that a common local host file
search order is to be used for both IPv4 and IPv6 name queries in the native
MVS and z/OS UNIX environments. The NOCOMMONSEARCH setup statement
identifies that a different local host file search order is to be used for IPv4 and
IPv6 name queries in the MVS and UNIX environments.

Chapter 1. Configuration overview 13

» Specification of a local host file that contains hard-coded IP addresses and host
names that can be used globally. The GLOBALIPNODES setup statement
identifies this file.

» Support for a user-specified default local host file. The DEFAULTIPNODES setup
statement identifies this file.

Follow the steps in |“Setting up a resolver address space”| to take advantage of the
resolver capabilities described above.

If the setup information is not provided, the resolver uses the applicable native MVS
or z/OS UNIX search order without any GLOBALTCPIPDATA,
DEFAULTTCPIPDATA, GLOBALIPNODES, DEFAULTIPNODES, or
COMMONSEARCH information.

Application programs using the gethostbyaddr and gethostbyname resolver calls
from the following IBM APIs result in using the zZOS Communications Server
resolver.

+ z/0OS Language Environment® C/C++ API

» z/OS UNIX Assembler Callable Services

» z/OS Communications Server C/C++ API

» z/OS Communications Server Callable and Macro API
» z/OS Communications Server REXX API

» z/OS Communications Server PASCAL API

Application programs using the getaddrinfo, getnameinfo, and freeaddrinfo resolver
calls from the following IBM APIs result in using the zZOS Communications Server
resolver.

» z/0OS Language Environment C/C++ API

» z/OS UNIX Assembler Callable Services

+ z/OS Communications Server Callable and Macro API

» z/OS Communications Server REXX API

Application programs using the sethostent, gethostent, and endhostent resolver
calls from the following IBM APIs result in using the zZOS Communications Server
resolver.

» z/0OS Language Environment C/C++ API

e z/OS Communications Server C/C++ API

The z/OS Communications Server SMTP server, BIND 9 DNS and DNS V9 utilities
(dig, nslookup and nsupdate) provide their own unique resolver services. When
their resolver initializes it will use GLOBALTCPIPDATA and DEFAULTTCPIPDATA
information.

Note that the SMTP resolver only uses the first value of the SEARCH TCPIP.DATA
statement when resolving host names.

Setting up a resolver address space

There are two ways in which to start the resolver address space:

» z/OS UNIX initialization will attempt to start the resolver unless explicitly
instructed not to. Using z/OS UNIX is the recommended method since it will
ensure that the resolver is available before any applications can make a
resolution request.

14 2/0S V1R4.0 CS: IP Configuration Guide

A BPXPRMxx statement, RESOLVER_PROC, is used to specify the procedure
name, if any, to be used to start the resolver address space. If the
RESOLVER_PROC statement is not in the BPXPRMxx parmlib member or is
specified with a procedure name of DEFAULT, z/OS UNIX will start a resolver
address space with the assigned name of RESOLVER. The resolver will use the
applicable search order for finding TCPIP.DATA statements but without a
GLOBALTCPIPDATA specification. If the address space cannot be started, z/OS
UNIX initialization continues.

When z/OS UNIX starts the resolver, it is started so that the resolver does not
require JES (that is, SUB=MSTR is used). For SUB=MSTR considerations, refer
to [z/0S MVS JCL Reference

If the RESOLVER_PROC statement has been used to specify a start procedure
name, then:

— To find the procedure, it must reside in a data set that is specified by the
MSTJCLxx PARMLIB member’s IEFPDSI DD card specification. For MSTJCL
considerations, refer to|z/ZOS MVS Initialization and Tuning Referencel

— The procedure must not contain any DD cards that specify SYSOUT=".

Since z/OS UNIX does not receive any error indication when it tries to start the
address space, it will issue an informational message containing the name of the
procedure it has started. The message will be:

BPXF2241 THE RESOLVER_PROC, procname, IS BEING STARTED.

Note: If the RESOLVER_PROC statement is not present or is specified with a
procedure name of DEFAULT, procname will be RESOLVER even though
no start procedure was used. If you want to use the procedure name
RESOLVER, a RESOLVER_PROC(RESOLVER) statement must be added
to your BPXPRMxx parmlib member.

If the start procedure is not found or has a JCL error in it, the usual z/OS error
messages will be issued.

For more detailed information refer to [zZ0S UNIX System Services Planning

* An installation can use its automation tools to start the resolver by use of the
MVS START operator command. If this approach to starting the resolver is used,
care should be taken to ensure that no applications that need resolver services
(for example, INETD) are started before the resolver address space is initialized.
This may mean removing the starting of INETD from the z/OS UNIX /etc/rc file
and starting INETD with automation after the resolver has initialized.

Resolver customization

If an installation wants to make use of any resolver setup statement facilities, the
following steps will be required. If the facilities are not required, no customization is
required and the search order for TCPIP.DATA will be determined by the API being
used.

» Create a resolver start procedure

The procedure requires a /SETUP DD JCL statement that points to a resolver
setup file. The z/OS CS provided sample procedure below can be found as
member EZBREPRC(alias RESOPROC) in SEZAINST:

//RESOLVER PROC PARMS='CTRACE(CTIRES00)'
//*

//* IBM Communications Server for 0S/390
//* SMP/E distribution name: EZBREPRC
//*

Chapter 1. Configuration overview 15

//* 5694-A01 (C) Copyright IBM Corp. 2001, 2002
//* Licensed Materials - Property of IBM

//*

//* Function: Start Resolver

/1*

//EZBREINI EXEC PGM=EZBREINI,REGION=OM,TIME=1440,PARM=&PARMS
/1*

//* When the Resolver is started by UNIX System Services it is
//* started with SUB=MSTR.
//* This means that JES services are not available to the Resolver

//* address space. Therefore, no DD cards with SYSOUT can be used.
//* See the MVS JCL Reference manual for SUB=MSTR considerations in
//* section "Running a Started Task Under the Master Subsystem".

//* This Resolver start procedure will need to reside in a data
//* set that is specified by the MSTJCLxx PARMLIB member's
//* IEFPDSI DD card specification. If not, the procedure will

//* not be found and the Resolver will not start.

//* See the MVS Initialization and Tuning Reference manual for
//* MSTJCL considerations in section "Understanding the Master
//* Scheduler Job Control Language"

/1%

//* SETUP contains Resolver setup parameters.

/1* See the section on "Understanding Resolvers" in the

//* IP Configuration Guide for more information. A sample of
//* Resolver setup parameters is included in member RESSETUP
//* of the SEZAINST data set.

/1%

//*SETUP DD DSN=TCPIP.TCPPARMS (SETUPRES),DISP=SHR,FREE=CLOSE
//+*SETUP DD DSN=TCPIP.SETUP.RESOLVER,DISP=SHR,FREE=CLOSE
//*SETUP DD PATH='/etc/setup.resolver',PATHOPTS=(ORDONLY)

Create a resolver setup file (MVS data set or HFS file)

The setup file defines the location of the global TCPIP.DATA file (MVS data set or
HFS file) and the default TCPIP.DATA name (MVS data set or HFS file). The
following statements are supported:

— comments (; or #)

— COMMONSEARCH

— DEFAULTIPNODES
— DEFAULTTCPIPDATA
— GLOBALIPNODES

— GLOBALTCPIPDATA
— NOCOMMONSEARCH

The z/OS CS provided sample setup file below can be found as member
EZBRECNF(alias RESSETUP) in SEZAINST:

IBM z/0S Communications Server
SMP/E distribution name: EZBRECNF

5694-A01 (C) Copyright IBM Corp. 2002.
Licensed Materials - Property of IBM

Function: Sample Resolver setup file

The following statement defines the final search location for
TCPIP.DATA statements. It will replace TCPIP.TCPIP.DATA
It may be an MVS data set or HFS file.

D

EFAULTTCPIPDATA('TCPIP.TCPIP.DATA")

The following statement defines the first search location for

16 2/0S V1R4.0 CS: IP Configuration Guide

TCPIP.DATA statements. It may be an MVS data set or HFS file.
Update with the correct data set or HFS file name
GLOBALTCPIPDATA('TCPCS.SYS.TCPPARMS (GLOBAL) ')
GLOBALTCPIPDATA(/etc/tcpipglobal.data)

The following statement defines the first search location for
IPNODES statements. It may be an MVS data set or HFS file.

Update with the correct data set or HFS file name
GLOBALIPNODES('TCPCS.SYS.TCPPARMS (IPNODES) ')

GLOBALIPNODES('TCPCS.ETC.IPNODES"')

The following statement defines the final search location for
IPNODES statements. It may be an MVS data set or HFS file.

Update with the correct data set or HFS file name
DEFAULTIPNODES('TCPCS.SYS.TCPPARMS (IPNODES) ')
DEFAULTIPNODES('TCPCS.ETC.IPNODES")

DEFAULTIPNODES (/etc/ipnodes)

The following statement defines if the common search order

#
#
#
; GLOBALIPNODES(/etc/ipnodes)
#
#
#
should be used or not.

NOCOMMONSEARCH

; COMMONSEARCH

If the resolver setup file is an MVS data set it must be either sequential (PS) or
partitioned (PO) organization, fixed (F) or fixed block format (FB), a logical record
length (LRECL) between 80 and 256, and have any valid blocksize (BLKSIZE)
for fixed block. If the setup file may need to be modified, a member of an MVS
partitioned data set is recommended.

If the file is an HFS file, it can reside in any directory. The maximum length of
line supported is 256 characters. If the line is greater than 256 it will be truncated
to 256 and processed.

The user ID assigned to the resolver address space needs read access (through
RACF or equivalent) to SYS1.PARMLIB, the resolver setup file, the global
TCPIP.DATA file, the default TCPIP.DATA file, the global IPNODES file, and the
default IPNODES file. Likewise, any user IDs or jobs using TCPIP facilities will
need read access to the global TCPIP.DATA file, the default TCPIP.DATA file, the
global IPNODES file, and the default IPNODES file. For example, for the MVS
data set RACF UACC=READ and for the HFS file, permission bits of 644 (Owner
can read and write, Group can read, Other can read) could be used. For an HFS
file, an OMVS segment or the default OMVS segment must be configured for the
resolver user ID and any user IDs or jobs using TCPIP facilities.

Update the z/OS UNIX BPXPRMxx parmlib member

The resolver start procedure name should be specified as the procname in the
BPXPRMxx Parmlib member's RESOLVER_PROC(procname) statement. If for

Chapter 1. Configuration overview 17

some reason the recommended method of using z/OS UNIX to start the resolver
is not desired, use the MVS START command to start the resolver address
space.

Managing the resolver address space
A BPXPRMxx statement, RESOLVER_PROC, is used to specify the procedure
name, if any, to be used to start the resolver address space. If the
RESOLVER_PROC statement is not in the BPXPRMxx parmlib member or is
specified with a procedure name of DEFAULT, z/OS UNIX will start a resolver
address space with the assigned name of RESOLVER. This name is used with the
following MVS system commands to manage the resolver address space:

« Start (S)

» Stop (P)
Stopping and restarting of the resolver should only be used if a new level of the
resolver code has been installed.

* Force

* Modify (F)
The MODIFY command should be used to dynamically change resolver setup
statements, update the resolver’'s usage of TCPIP.DATA statements, or update
the resolver’s usage of local host and services tables. Dynamic changes are not

supported by the resolver provided by the SMTP server, BIND 9 DNS and DNS
V9 utilities.

Refer to |zZ0S Communications Server: IP System Administrator's Commandd for
command details.

The following MVS System commands can be used to control and display the
status of the resolver CTRACE facilities:

e Trace CT
» Display Trace

Refer to the |zZ0S Communications Server: IP Diagnosid for CTRACE usage and
control information.

Understanding search orders of configuration information

It is important to understand the search order for configuration files used by TCP/IP
functions, and when you can override the default search order with environment
variables, JCL, or other variables you provide. This knowledge allows you to
accommodate your local data set and HFS file naming standards, and it is helpful to
know the configuration data set or HFS file in use when diagnosing problems.

It is important to note that the z/OS CS environment consists of the TCP/IP address
space, z/OS CS applications, and the TCP/IP MVS applications. The TCP/IP
address space functions are also referred to as the stack. The z/OS CS
applications refer to those applications using the z/OS UNIX socket API. The
TCP/IP MVS applications refer to those applications written to the MVS APIs (for
example, C, Sockets-Extended, CICS, IMS, and REXX). The TCP/IP stack and both
sets of applications have some common (or global) configuration files, but they also
use configuration files that are different.

Another important point to note is that when a search order is applied for any
configuration file, the search ends with the first file found. Therefore, unexpected
results are possible if you place configuration information in a file that never gets

18 2/0S V1R4.0 CS: IP Configuration Guide

found, either because other files exist earlier in the search order, or because the file
is not included in the search order chosen by the application.

Configuration data set naming conventions

When searching for configuration files, you can explicitly tell TCP/IP where most
configuration files are by using DD statements in the JCL procedures or by setting
environment variables. Otherwise, you can let TCP/IP dynamically determine the
location of the configuration files, based on search orders shown in

For example, in ITabIe 2 on page 21|, for the FTP server application, if the installation
did not code the /SYSFTPD DD statement, the FTP server would search for
jobname.FTP.DATA, then file /etc/ftp.data, then data set
SYS1.TCPPARMS(FTPDATA), and finally hlq.FTP.DATA.

Dynamic data set allocation
TCP/IP makes extensive use of dynamically allocated data sets using the MVS

dynamic data set allocation function to search for configuration files. Multiple
versions of a configuration data set can exist, each having a different high-level
qualifier or middle-level qualifier. The search order for any configuration file will
determine which data set is found and used.

High-level qualifier: High-level qualifiers (HLQ) permit you to associate an
application’s configuration data set with a particular jobname or TSO user ID, or
permit you to use a default configuration data set for the application. The possible
high-level qualifiers are:

» userid
Userid is the TSO user ID which invoked the application.
* jobname

Jobname is the application’s batch JCL jobname or the name of the application’s
started procedure.

* hlg
TCP/IP is distributed with a default high-level qualifier (HLQ) of TCPIP. To
override the default HLQ used by dynamic data set allocation, specify the
DATASETPREFIX statement in the TCPIP.DATA configuration file. For most
configuration files, the DATASETPREFIX value is used as the high-level qualifier
of the data set name in the last step in the search order. Note that the
DATASETPREFIX value is not used as the high-level qualifier of the data set
name used as the last step in the search order for the PROFILE.TCPIP and
TCPIP.DATA configuration files.

Middle-level qualifiers: Multiple middle-level qualifiers (MLQ) permit the isolation
of certain profile and translation table data sets. Two of the possible middle-level
qualifiers are:

* Node name

Node name is an MLQ used in the search order for finding the configuration file
PROFILE.TCPIP. Node name is determined by the parameters specified during
VMCEF initialization. For further information on initializing VMCF, refer to
[Program Directory

* Function name

The TCP/IP implementation of national language support (NLS) and double-byte
character set (DBCS) support requires the use of multiple translation tables. To
facilitate the concurrent use of multiple languages and code pages, TCP/IP uses

Chapter 1. Configuration overview 19

a middle-level qualifier to designate which server or client uses a particular
translation table. STANDARD, the default MLQ, is available for use if a single
translation table can be used by multiple servers or clients. The TCP/IP Telnet
client and FTP provide a TRANSLATE parameter that permits you to specify your
chosen MLQ to replace the function name for that invocation of the command.
For example, SRVRFTP is used as an MLQ by the File Transfer Protocol server.

Following are some of the data sets that are only dynamically allocated by TCP/IP
in a configuration file search order (you cannot specify them with DD statements in

JCL):

ETC.PROTO ETC.RPC

HOSTS . ADDRINFO HOSTS.SITEINFO
SRVRFTP.TCPCHBIN SRVRFTP.TCPHGBIN
SRVRFTP.TCPKJBIN SRVRFTP.TCPSCBIN
SRVRFTP.TCPXLBIN STANDARD. TCPCHBIN
STANDARD. TCPHGBIN STANDARD. TCPKJBIN
STANDARD.TCPSCBIN STANDARD. TCPXLBIN

For each of these data sets, the fully qualified name is established by using one of
the following values as the data set HLQ:

* User ID or job name
+ DATASETPREFIX value

Naming conventions for dynamically allocated data sets: A data set that you
allocate explicitly (with a DD statement in JCL) can have any valid MVS data set
name or HFS file name. A data set that you create for the purpose of being
allocated dynamically by TCP/IP must use the following naming conventions.

Note: In the examples below, xxxx indicates an appropriate high-level qualifier,
yyyy indicates an appropriate middle-level qualifier, and zzzz indicates an
appropriate low-level qualifier.

* userid.yyyy.zzzz
userid is the user ID of the logged on TSO user.
» TSOprefix.yyyy.zzzz

TSOprefix is the data set prefix established by the TSO PROFILE command.
userid is the default value of TSOprefix.

» jobname.yyyy.zzzz
jobname is the job name specified on the JOB statement for a job stream or the
procedure name for a started procedure.

* hlq.yyyy.zzzz
hlg is the TCP/IP HLQ distributed as the system default, which can be overridden
by the value in the DATASETPREFIX statement.

* Xxxx.nodename.zzzz

nodename is an MLQ that is used to define the data set name for the TCP/IP
stack profile data set.

e xxxx.function_name.zzzz

function_name denotes an acronym specifying a particular TCP/IP server (for
example SRVRFTP for the FTP server) and is used as an MLQ for the
translation table data set for that application.

* XxXxx.private_name.zzzz

private_name is a user-specified private qualifier that can be specified as an
option on some TCP/IP commands.

* SYS1.TCPPARMS(TCPDATA)

20 z/0S V1R4.0 CS: IP Configuration Guide

The member of a system data set used to find the configuration file TCPIP.DATA.

lists the configuration data sets used by the TCP/IP servers and functions. It
includes the name of the sample and the usage of the data set.

Table 2. TCP/IP configuration data sets

Data set (search order)

Copied from

Usage

hlq.ETC.IPNODES

SEZAINST(EZBREIPN)

One of the local host files used for
IPv6 name query, or IPv4 and IPv6
name query when COMMONSEARCH
is specified in the resolver setup file.

ETC.PROTO

usr/Ipp/tcpip/samples/protocol

Used to map types of protocol to
integer values to determine the
availability of the specified protocol.
Required by several z/OS CS
components.

Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

ETC.RPC

SEZAINST(ETCRPC)

Defines RPC applications to the
Portmapper function.

ETC.SERVICES

usr/lpp/tcpip/samples/services

Establishes port numbers for servers
using TCP and UDP. Required for
z/OS UNIX SNMP, OROUTED, and
OMPROUTE (if the RIP protocol is
used).

Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

FTP.DATA

/ISYSFTPD
userid/jobname.FTP.DATA
/etc/ftp.data
SYS1.TCPPARMS(FTPDATA)
. hlg.FTP.DATA

s wP s

SEZAINST(FTCDATA) for the client
and (FTPSDATA) for the server

Overrides default FTP client and
server parameters for the FTP server.
For more information about hig,
jobname, or userid, see |Chapter 9,|

“Transferring files using FTP” on|

page 383

HOSTS.LOCAL (or /etc/hosts)

SEZAINST(HOSTS)

Input data set to MAKESITE for
generation of HOSTS.ADDRINFO and
HOSTS.SITEINFO.

LPD.CONFIG SEZAINST(LPDDATA) Configures the Line Printer Daemon
for the Remote Print Server.
LUB2CFG SEZAINST(LUB2CFQG) Provides configuration parameters for

the SNALINK LUB.2 interface.

MASTER.DATA

No sample provided

DNS database input required for
authoritative name servers.

MIBS.DATA

1. The name of an HFS file or an
MVS file specified by the
MIBS_DATA environment variable

2. /etc/mibs.data HFS file

No sample provided

Defines textual names for MIB objects
for the osnmp command.

NPSIDATE SEZAINST(NPSIDATE) Operates the TCP/IP X.25 NCP
Packet Switching Interface.
NPSIGATE SEZAINST(NPSIGATE) Supports GATE MCHs for X.25 NCP

Packet Switching Interface.

Chapter 1. Configuration overview 21

Table 2. TCP/IP configuration data sets (continued)

Data set (search order)

Copied from

Usage

OMPROUTE configuration

1. The name of an HFS file or MVS
file specified by the
OMPROUTE_FILE environment
variable

2. /etc/omproute.conf

3. hlq.ETC.OMPROUTE.CONF

SEZAINST(EZAORCFG)

Contains OMPROUTE configuration
statements.

OSNMP.CONF
1. /etc/osnmp.conf
2. /etc/snmpv2.conf

/usr/lpp/tcpip/samples/snmpv2.conf

Defines target host security
parameters for the osnmp command.

OSNMPD.DATA

1. The name of an HFS file or MVS
file specified by the
OSNMPD_DATA environment
variable

2. /etc/osnmpd.data HFS file

3. The data set specified on the
OSNMPD DD statement in the
agent procedure

4. jobname.OSNMPD.DATA, where
jobname is the name of the job
used to start the SNMP agent

5. SYS1.TCPPARMS(OSNMPD)

6. hlg.OSNMPD.DATA, where hlq
either defaults to TCPIP or is

specified on the DATASETPREFIX

statement in the TCPIP.DATA file
being used

Note: The first file found in the
search order is used.

/usr/lpp/tcpip/samples/osnmpd.data

Used by SNMP for setting values for
selected MIB objects.

PAGENT.CONF

1. File or data set specified with -c
startup option

2. File or data set specified with
PAGENT_CONFIG_FILE
environment table

3. /etc/pagent.conf
4. hlg.PAGENT.CONF

/ust/Ipp/tcpip/samples/pagent.conf

Defines Policy Agent configuration
parameters and optionally defines
service policies (rules and actions).

PROFILE.TCPIP

//PROFILE
job_name.node_name.TCPIP
hlg.node_name. TCPIP
job_name.PROFILE.TCPIP
hlqg.PROFILE.TCPIP

o~ 0N

SEZAINST(SAMPPROF)

Provides TCP/IP initialization
parameters and specifications for
network interfaces and routing.

Resolver Setup File

SEZAINST (RESSETUP)

Provides configuration statements for
the resolver.

22 7/0S V1R4.0 CS: IP Configuration Guide

Table 2. TCP/IP configuration data sets (continued)

Data set (search order) Copied from

Usage

PW.SRC

1. The name of an HFS file or an
MVS file specified by the
PW_SRC environment variable

2. /etc/pw.src HFS file

3. The data set specified on
SYSPWSRC DD statement in the
agent procedure

No sample provided

4. jobname.PW.SRC, where jobname
is the name of the job used to
start the SNMP agent

5. SYS1.TCPPARMS(PWSRC)

6. hlq.PW.SRC, where hlq either
defaults to TCPIP or is specified
on the DATASETPREFIX
statement in the TCPIP.DATA file
being used

Note: The first file found in the
search order is used.

Defines a list of community names
used when accessing objects on a
destination SNMP agent.

RSVPD.CONF

1. File or data set specified with -c
startup option

/usr/Ipp/tcpip/samples/rsvpd.conf

2. File or data set specified with
PAGENT_CONFIG_FILE
environment table

3. /etc/rsvpd.conf
4. hlq.RSVPD.CONF

Defines RSVP Agent configuration
parameters.

SNMPD.BOOTS

1. The name of an HFS file or an
MVS file specified by the
SNMPD_BOQOTS environment
variable.

No sample provided

2. /etc/snmpd.boots

Note: The first file found in the
search order is used.

Defines the SNMP agent security and
notification destinations.

Note: If the SNMPD.BOOTS file is
not provided, the SNMP agent creates
the file. If multiple SNMPv3 agents are
running on the same MVS image, use
the environment variable to specify
different SNMPD.BOOTS files for the
different agents. For security reasons,
ensure unique engine IDs are used for
different SNMP agents.

SNMPD.CONF

1. The name of an HFS file or an
MVS file specified by the
SNMPD_CONF environment
variable.

/usr/lpp/tcpip/samples/snmpd.conf

2. /etc/snmpd.conf

Note: The first file found in the
search order is used.

Defines the SNMP agent security and
notification destinations.

Note: If the SNMPD.CONF file is
found, the PW.SRC file and the
SNMPTRAP.DEST files are not used.

Chapter 1. Configuration overview 23

Table 2. TCP/IP configuration data sets (continued)

Data set (search order) Copied from

Usage

SNMPTRAP.DEST

1. The name of an HFS file or an
MVS file specified by the
SNMPTRAP_DEST environment
variable

2. /etc/snmptrap.dest HFS file

3. The data set specified on
SNMPTRAP DD statement in the
agent procedure

4. jobname.SNMPTRAP.DEST,
where jobname is the name of the
job used to start the SNMP agent

5. SYS1.TCPPARMS(SNMPTRAP)

6. hlg.SNMPTRAP.DEST, where hig
either defaults to TCPIP or is
specified on the DATASETPREFIX
statement in the TCPIP.DATA file
being used

No sample provided

Note: The first file found in the
search order is used.

Defines a list of managers to which
the SNMP agent sends traps.

SMTPCONF SEZAINST(SMTPCONF)

Provides configuration parameters for
the Simple Mail Transfer Protocol.

SMTPNOTE SEZAINST(SMTPNOTE)

Defines note parameters for Simple
Mail Transfer Protocol.

TCPIP.DATA SEZAINST(TCPDATA)

Provides parameters for TCP/IP client
programs.

Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

TNDBCSCN SEZAINST(TNDBCSCN)

Provides configuration parameters for
Telnet 3270 Transform support.

TRAPFWD.CONF

1. An HFS file or an MVS data set
specified by the
TRAPFWD_CONF environment
variable

2. /etc/trapfwd.conf

No sample provided

Note: The first file found in the
search order is used.

Defines addresses to which the Trap
Forwarder Daemon forwards traps.
Note: If the environment variable is
set and if the file specified by the
environment variable is not found, the
Trap Forwarder daemon terminates.

VTAMLST SEZAINST(VTAMLST)

Defines VTAM® applications and their
characteristics. Entries required for
Telnet, SNALINK LUO, SNALINK
LUB.2, and X.25 NPSI Server.

X25CONF SEZAINST(X25CONF)

Provides configuration parameters for
the X.25 NCP Packet Switching
Interface.

X25VSVC SEZAINST(X25VSVC)

Provides switched virtual circuit
configuration for the X.25 NCP Packet
Switching Interface.

24 7/0S V1R4.0 CS: IP Configuration Guide

Configuration files for the TCP/IP stack

Two configuration files are used by the TCP/IP stack, PROFILE.TCPIP and
TCPIP.DATA. PROFILE.TCPIP is used only for the configuration of the TCP/IP
stack. TCPIP.DATA is used during configuration of both the TCP/IP stack and
applications; the search order used to find TCPIP.DATA is the same for both the
TCP/IP stack and applications.

PROFILE.TCPIP search order

During initialization of the TCP/IP stack, system operation and configuration
parameters for the TCP/IP stack are read from the configuration file
PROFILE.TCPIP. As shown in[Table 2 on page 21} the search order used by the
TCP/IP stack to find PROFILE.TCPIP involves both explicit and dynamic data set
allocation as follows:

» //PROFILE DD DSN=aaa.bbb.ccc(anyname)

» jobname.nodename.TCPIP

* hlg.nodename. TCPIP

» jobname.PROFILE.TCPIP

* TCPIP.PROFILE.TCPIP

Note: Explicitly specifying the PROFILE DD statement in the TCPIPROC JCL is the
recommended way to specify PROFILE.TCPIP. If this DD statement is
present, the data set it defines is explicitly allocated by MVS and no dynamic
allocation is done. If this statement is not present, the search order continues
to use dynamic allocation for the PROFILE.TCPIP.

Examples

The following examples show the search order used by TCP/IP to find the
configuration file PROFILE.TCPIP. These examples use the sample TCP/IP started
procedure, TCPIPROC, installed in the hiqg.SEZAINST data set.

Example when DD cards are in your TCP/IP startup procedure: In this
example, the PROFILE DD cards are specified as follows:

//TCPIP PROC PARMS='CTRACE(CTIEZB0O)'

/1%

//* z/0S Communications Server

//* SMP/E Distribution Name: EZAEBO1G

//*

//* 5694-A01 (C) Copr. IBM Corp. 1991,2001.
/1* A1l rights reserved.

//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted
/1% by GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions

/1%

//TCPIP EXEC PGM=EZBTCPIP,

/11 PARM="'&PARMS ',

/11 REGION=0K, TIME=1440

/1

//PROFILE DD DISP=SHR,DSN=MVSA.PROD.PARMS(PROFILE)

Because the PROFILE DD is the first step in the search order, TCP/IP uses the
data set MVSA.PROD.PARMS(PROFILE) as the PROFILE.TCPIP configuration file.

Chapter 1. Configuration overview 25

Example when no DD cards are in your TCP/IP startup procedure: In this
example, the PROFILE DD statement is not specified:

//TCPIP PROC PARMS='CTRACE(CTIEZB0O)'

/1*

//* z/0S Communications Server

//* SMP/E Distribution Name: EZAEBO1G

/1*

//* 5694-A01 (C) Copr. IBM Corp. 1991,2001.
/1* A1l rights reserved.

//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted
//* by GSA ADP Schedule Contract with IBM Corp.
/1* See IBM Copyright Instructions

/1%

//TCPIP EXEC PGM=EZBTCPIP,

// PARM="'&PARMS ',

// REGION=0K, TIME=1440

%

For the configuration file PROFILE.TCPIP, the search order used is as follows:
1. PROFILE DD

No PROFILE DD exists...search continues.
2. jobname.nodename.TCPIP

If jobname.nodename.TCPIP is found, the search stops here.
3. hlg.nodename. TCPIP

If hlg.nodename.TCPIP is found, the search stops here.
4. jobname.PROFILE.TCPIP

If jobname.PROFILE.TCPIP is found, the search stops here.
5. TCPIP.PROFILE.TCPIP

TCPIP.PROFILE.TCPIP is searched last if necessary.

TCPIP.DATA search order

TCPIP.DATA is used by the stack address space as follows:

» The TCP/IP stack’s configuration component uses TCPIP.DATA during TCP/IP
stack initialization to determine the stack's HOSTNAME. To get its value, the
z/OS UNIX environment search order is used.

* The TCP/IP stack’s TN3270 Telnet server component uses TCPIP.DATA
statements to resolve a client’s IP address to a name. To obtain the
resolver-related statements for address resolution, the native MVS environment
search order is used.

For details on the z/OS UNIX environment and native MVS environment search
orders and the usage of z/OS UNIX environment variables, see
lconfiguration files” on page 27}

Configuration files for TCP/IP applications

This section describes the resolver configuration files that can be used by TCP/IP
applications and the search orders for those files. In addition to resolver files, an
application can also have its own configuration files that are specific to that
application. For more information about application-specific configuration files, see
the descriptions of the individual applications in|Part 2, “Server applications” on|

26 z/0S V1R4.0 CS: IP Configuration Guide

| Resolver configuration files

Understanding the resolver search orders used in native MVS and z/OS UNIX
environments is key to setting up your system properly.

As described in|“Understanding resolvers” on page 12|, the resolver can use

available name servers, local definitions, or a combination of both, to process API
resolver requests. shows how local definitions can be specified and

searched for when needed.

Native MVS Sockets
reo || ¢ || ms L cics

Sockets| | Sockets| Sockets
Sockets Extended
Callable

UNIX System Services

Socket API

HOSTS.SITEINFO

System
Resolver Sockets Extended System
Assembler MACRO Resolver
Config
HFS files:
Config /etc/resolv.conf
Data Sets: /etc/protocol
/etc/services
TCPIP.DATA
ETC.IPNODES Tcp ubP RAW /etc/hosts
ETC.PROTO /etc/ipnodes
ETC.SERVICES
HOSTS.ADDRINFO P

Device Interfaces

Figure 1. Resolver related configuration files in zZOS UNIX and native MVS environments

shows the complete set of local definition possibilities available to the
resolver. The actual search order of the candidate files varies depending on the
type of APl used and the resolver’s setup. The search orders are explained in more

detail in [‘Search orders used in the zZOS UNIX environment” on

age 28| and

{‘Search orders used in the native MVS environment” on page 33

Table 3. Local definitions available to resolver

description

File type APIs affected Candidate files

Base resolver | All APls
configuration
files

© ® N O~ DN

GLOBALTCPIPDATA
RESOLVER_CONFIG environment variable
/etc/resolv.conf
SYSTCPD DD-name
userid. TCPIP.DATA
jobname. TCPIP.DATA
SYS1.TCPPARMS(TCPDATA)
DEFAULTTCPIPDATA
TCPIP.TCPIP.DATA

Chapter 1. Configuration overview 27

Table 3. Local definitions available to resolver (continued)

File type APIs affected Candidate files
description
Trglnslate All APls 1. X_XLATE environment variable
tables 2. userid. STANDARD.TCPXLBIN
3. jobname.STANDARD.TCPXLBIN
4. hlqg.STANDARD.TCPXLBIN
5. Resolver-provided translate table, member
STANDARD in SEZATCPX
’[Lot;al host enghotste?t 1. X_SITE environment variable
ables endneten .)
getaddrinfo 2. X_ADDR environment variable
gethostbyaddr 3. /etc/hosts
gethostbyname 4. userid HOSTS.xxxxINFO
gethostent 5. jobname.HOSTS.xxxxINFO
GetHostNumber
GetHostResol 6. hlg.HOSTS.xxxxINFO
GetHostString 7. GLOBALIPNODES
getnameinfo 8. RESOLVER_IPNODES environment variable
getnetbyaddr 9. userid ETC.IPNODES
getnetbyname]
getnetent 10. jobname.ETC.IPNODES
IsLocalHost 11. hlq.ETC.IPNODES
Retio"'te t 12. DEFAULTIPNODES
sethosten)
setnetent 13. /etc/ipnodes
Protocol endprotoent 1. Jetc/protocol
information getprotobyname .
getprotobynumber 2. userid ETC.PROTO
getprotoent 3. jobnameETCPROTO
setprotoent 4. hlg.ETC.PROTO
Services endservent 1. Jetc/services
information getaddrinfo
getnameinfo 2. SERVICES DD-name
getser\/byname 3. userid ETC.SERVICES
getservbyport 4. jobname.ETC.SERVICES
getservent 5. hig.ETC.SERVICES
setservent
Host alias getaddrinfo HOSTALIASES environment variable
table gethostbyname

Search orders used in the z/0S UNIX environment

This section describes setting environment variables for configuration files, and the
search orders used in the z/OS UNIX environment for the different file types shown
in [Table 3 on page 27| The z/OS UNIX socket functions utilize various types of
TCP/IP data sets and HFS files. They include:

» Base resolver configuration files
» Translate tables

* Local host tables

* Protocol information

* Services information

* Host alias table

28 z/0S V1R4.0 CS: IP Configuration Guide

The particular file or table chosen can be either an MVS data set or an HFS file,
depending on the resolver configuration settings and the presence of given files on
the system.

Note: A program’s first resolver service request initializes the resolver definitions
that will be used for all resolver requests. For long running programs, the
definitions can be modified by use of the MODIFY REFRESH operator
command. For command usage and syntax, see |z/OS Communicationsl
[Server: IP System Administrator's Commands,

Setting environment variables for configuration files:

A z/0OS C/C++ environment variable is an identifier used like a variable in a
program. In|TabIe 3 on page 27|, the following environment variables appear:

HOSTALIASES
The host aliases data set or file.

RESOLVER_CONFIG
The resolver configuration data sets or files.

RESOLVER_IPNODES
The IPNODES data sets or files.

X_SITE and X_ADDR
The HOSTS.SITEINFO and HOSTS.ADDRINFO data sets or files created
by the MAKESITE TSO command.

X_XLATE
The ASCII-EBCDIC translate table data set or file created by the
CONVXLAT TSO command.

Setting an environment variable so that a zZOS UNIX application is able to retrieve
the value depends on whether the z/OS UNIX application is started from the z/OS
shell or from JCL.

If the z/OS UNIX application is to be started from the z/OS shell, the export shell
command can be used to set the environment variable. For example, to set the
value of RESOLVER_CONFIG to the HFS file /etc/tcpa.data, you can code the
following export command:

export RESOLVER CONFIG=/etc/tcpa.data

If instead of an HFS file, you want to set RESOLVER_CONFIG to the data set
MVSA.PROD.PARMS(TCPDATA), you can specify the following export command.
Be sure to put the single quotation marks around the data set name. If you do not,
your user ID will be added as a prefix to the data set name when the resolver tries
to open the file.

export RESOLVER_CONFIG="//'MVSA.PROD.PARMS (TCPDATA)'"

If the z/OS UNIX application is to be started from JCL instead of from the z/OS
shell, the environment variable needs to be passed as a parameter in the JCL of
the application. For example, the following shows the RESOLVER_CONFIG
variable set to pick up the TCPIP.DATA information from a file in the HFS:
//0SNMPD PROC

/1%

//* Procedure for running the SNMP agent

/1%

//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K, TIME=NOLIMIT,

// PARM=('POSIX(ON) ALL31(ON)/'

Chapter 1. Configuration overview 29

/1 'ENVAR("RESOLVER_CONFIG=/etc/tcpa.data")/-d 0'))

The following example shows the RESOLVER_CONFIG variable set to pick up the
TCPIP.DATA information from a partitioned data set:

//0SNMPD PROC

/1%

//* Procedure for running the SNMP agent

/1%

//0SNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,

// PARM=('POSIX(ON) ALL31(ON)/'

// 'ENVAR("RESOLVER _CONFIG=//''TCPA.MYFILE(TCPDATA)''")/-d 0'))

The following example shows an alternate method of accessing environment
variables:

//0SNMPD PROC

/1%

//* Procedure for running the SNMP agent

/1%

//0SNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=('POSIX(ON) ALL31(ON)/'

// 'ENVAR(" CEE_ENVFILE=DD:STDENV")/-d 0'))

//STDENV DD DSN=TCPA.MYFILE(TCPDATA),DISP=SHR

In this case, the environment variables will be read from the file specified on the
STDENV DD statement. If this file is an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because RECFM=F
enables padding with blanks for the environment variables. See
[Programming Guidd for more information on specifying a list of environment
variables using the _CEE_ENVFILE environment variable.

Base resolver configuration files: The base resolver configuration file contains
TCPIP.DATA statements. In addition to resolver directives, it is referenced to
determine, among other things, the data set prefix (DATASETPREFIX statement’s
value) to be used when trying to access some of the configuration files specified in
this section.

The search order used to access the base resolver configuration file is as follows:
1. GLOBALTCPIPDATA

If defined, the resolver GLOBALTCPIPDATA setup statement value is used. For
a description of the GLOBALTCPIPDATA statement, see

[resolvers” on page 12|
The search continues for an additional configuration file. The search ends with
the next file found.

2. The value of the environment variable RESOLVER_CONFIG
The value of the environment variable is used. This search will fail if the file
does not exist or is allocated exclusively elsewhere.

3. /etc/resolv.conf

4. //SYSTCPD DD card
The data set allocated to the DDname SYSTCPD is used. In the z/OS UNIX
environment, a child process does not have access to the SYSTCPD DD. This

is because the SYSTCPD allocation is not inherited from the parent process
over the fork() or exec function calls.

5. userid TCPIP.DATA

30 z/0S V1R4.0 CS: IP Configuration Guide

userid is the user ID that is associated with the current security environment
(address space or task/thread)

6. SYS1.TCPPARMS(TCPDATA)
7. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used. For
a description of the DEFAULTTCPIPDATA statement, see |“Understanding
[resolvers” on page 12|

8. TCPIP.TCPIP.DATA

Any TCPIP.DATA statements that have not been found will have their default values,
if any, assigned.

Translate tables: The translate tables (EBCDIC-to-ASCIl and ASCII-to-EBCDIC)
are referenced to determine the translate data sets to be used.

The search order used to access this configuration file is as follows. The search
order ends at the first file found:

1. The value of the environment variable X_XLATE

The value of the environment variable is the name of the translate table
produced by the CONVXLAT TSO command.

2. userid STANDARD.TCPXLBIN

userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hlg.STANDARD.TCPXLBIN
hiq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

4. If no table is found, the resolver uses a hardcoded default table that is identical
to the STANDARD member in the SEZATCPX data set.

Local host tables: The local host table supplies sitename information for, as one
example, resolving hostnames to host or network addresses. The local host table
can also supply address information, for example, for resolving addresses to
hostname or network names. There are different search orders used for selecting
the local host table for these different purposes. The search order to use is based
on certain resolver setup statements, the type of API invocation, and possibly the
type of host address (IPv4 versus IPv6) being requested or being resolved.

IPv4-unique search order for sitename information: The resolver uses the
IPv4-unique search order for sitename information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the:

» getaddrinfo API is attempting to locate an IPv4 address.
» gethostbyname, sethostent, gethostent, or endhostent API is invoked.

The resolver uses the IPv4-unique search order for sitename information
unconditionally for getnetbyname API calls.

The IPv4-unique search order for sitename information is as follows. The search
ends at the first file found:

1. The value of the environment variable X_SITE

The value of the environment variable is the name of the sitename information
file created by the TSO MAKESITE command.

2. /etc/hosts

Chapter 1. Configuration overview 31

3. userid HOSTS.SITEINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlq.HOSTS.SITEINFO

hiq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hig is TCPIP by default.

IPv4-unique search order for address information: The resolver uses the
IPv4-unique search order for address information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the
getnameinfo API is attempting to resolve an IPv4 address or the gethostbyaddr API
is invoked.

The resolver uses the IPv4-unique search order for address information
unconditionally for the setnetent, getnetent, endnetent, or getnetbyaddr APIs.

The IPv4-unique search order for address information is as follows. The search
ends at the first file found:

1. The value of the environment variable X_ADDR

The value of the environment variable is the name of the address information
file created by the TSO MAKESITE command.

2. /etc/hosts
3. userid HOSTS.ADDRINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlq.HOSTS.ADDRINFO

hlg represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlg is TCPIP by default.

IPv6/common search order: The resolver uses the IPv6/common search order
when it determines that any of the following conditions exist:

* The resolver setup statement COMMONSEARCH is specified and the
getaddrinfo, gethostbyname, getnameinfo, gethostbyaddr, sethostent, gethostent,
or endhostent APIs are invoked.

* The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getaddrinfo API is attempting to locate an IPv6 address.

* The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getnameinfo API is attempting to resolve an IPv6 address.

Note: The IPv6/common search order is never used for the following APl socket
calls:

* getnetbyname
* getnetbyaddr
e setnetent

* getnetent

* endnetent

The IPv6/common search order is as follows. The search ends at the first file found:
1. GLOBALIPNODES value

32 z/0S V1R4.0 CS: IP Configuration Guide

If defined, the resolver GLOBALIPNODES setup statement value is used. For a
description of the GLOBALIPNODES statement, see [‘Understanding resolvers’

on page 12,
2. The value of the environment variable RESOLVER_IPNODES
3. userid ETC.IPNODES

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlg.ETC.IPNODES

hig represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hig is TCPIP by default.

5. DEFAULTIPNODES
If defined, the resolver DEFAULTIPNODES setup statement value is used. For a

description of the DEFAULTIPNODES statement, see [‘Understanding resolvers’|
‘-

6. /etc/ipnodes

Protocol information: The protocol information supplies protocol related
information for the socket calls listed in|Table 3 on page 27

The search order used to access this configuration file is as follows. The search
ends at the first file found:

1. /etc/protocol

2. userid ETC.PROTO
userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hig.ETC.PROTO

hiq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Services information: The services information supplies the service information
for the socket calls listed in [Table 3 on page 27|

The search order used to access this configuration file is as follows. The search
ends at the first file found:

1. /etc/services

2. userid ETC.SERVICES
userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hig.ETC.SERVICES

hiq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Host alias table: The host alias table supplies hostname alias information for the
socket calls listed in [Table 3 on page 27} The search order used to access this
configuration file consists only of the value of the environment variable
HOSTALIASES.

Search orders used in the native MVS environment
The native MVS environment socket functions utilize various type of TCP/IP data
sets, including:

» Base resolver configuration files

Chapter 1. Configuration overview 33

* Translate tables

* Local host tables

* Protocol information
» Services information

The particular file or table chosen depends on the resolver configuration settings
and the presence of given files on the system.

Note: A program’s first resolver service request initializes the resolver definitions
that will be used for all resolver requests. For long running programs, the
definitions can be modified by use of the MODIFY REFRESH operator
command. For command usage and syntax, see |z70S Communicationg
[Server: IP System Administrator’s Commands

Base resolver configuration files: The base resolver configuration file contains
TCPIP.DATA statements. In addition to resolver directives, it is referenced to
determine, among other things, the data set prefix (DATASETPREFIX statement’s
value) to be used when trying to access some of the configuration files specified in
this section.

The search order used to access the base resolver configuration file is as follows:
1. GLOBALTCPIPDATA.

If defined, the resolver GLOBALTCPIPDATA setup statement value is used. For
a description of the GLOBALTCPIPDATA statement, see
[resolvers” on page 12

The search continues for an additional configuration file. The search ends with
the next file found.

2. //SYSTCPD DD card
The data set allocated to the DDname SYSTCPD is used.
3. userid/jobname. TCPIP.DATA

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

4. SYS1.TCPPARMS(TCPDATA)
5. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used. For
a description of the DEFAULTTCPIPDATA statement, see

[resolvers” on page 12|
6. TCPIP.TCPIP.DATA

Translate tables: The translate tables are referenced to determine the translate
data sets to be used.

The search order used to access this configuration file is as follows. The search
order ends at the first file found:

1. userid/jobname.STANDARD.TCPXLBIN

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

34 z/0S V1R4.0 CS: IP Configuration Guide

2. hlq.STANDARD.TCPXLBIN

hlg represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hig is TCPIP by default.

3. If no table is found, the resolver uses a hardcoded default table that is identical
to the STANDARD member in the SEZATCPX data set.

Local host tables: The local host table supplies sitename information for, as one
example, resolving hostnames to host or network addresses. The local host table
can also supply address information, for example, for resolving addresses to
hostname or network names. There are different search orders used for selecting
the local host table for these different purposes. The search order to use is based
on certain resolver setup statements, the type of API invocation, and possibly the
type of host address (IPv4 versus IPv6) being requested or being resolved.

IPv4-unique search order for sitename information: The resolver uses the
IPv4-unique search order for sitename information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the:
» getaddrinfo API is attempting to locate an IPv4 address.

» gethostbyname, GetHostNumber, GetHostResol, IsLocalHost, Resolve,
sethostent, gethostent, or endhostent API is invoked.

The resolver uses the IPv4-unique search order for sitename information
unconditionally for getnetbyname API calls.

The IPv4-unique search order for sitename information is as follows. The search
ends at the first file found:
1. userid/jobname.HOSTS.SITEINFO
userid is the user ID that is associated with the current security environment
(address space or task/thread).
jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.
2. hlg.HOSTS.SITEINFO

hlg represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hig is TCPIP by default.

IPv4-unique search order for address information: The resolver uses the
IPv4-unique search order for address information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the
getnameinfo API is attempting to resolve an IPv4 address or the gethostbyaddr or
GetHostString API is invoked.

The resolver uses the IPv4-unique search order for address information
unconditionally for the setnetent, getnetent, endnetent, or getnetbyaddr APlIs.

The IPv4-unique search order for address information is as follows. The search
ends at the first file found:

1. userid/jobname.HOSTS.ADDRINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlq.HOSTS.ADDRINFO

Chapter 1. Configuration overview 35

hiq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hig is TCPIP by default.

IPv6/common search order: The resolver uses the IPv6/common search order
when it determines that any of the following conditions exist:

The resolver setup statement COMMONSEARCH is specified, and the
getaddrinfo, gethostbyname, getnameinfo, gethostbyaddr, GetHostNumber,
GetHostResol, GetHostString, IsLocalHost, Resolve, sethostent, gethostent, or
endhostent APIs are invoked.

The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getaddrinfo API is attempting to locate an IPv6 address.

The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getnameinfo or Resolve API is attempting to resolve an IPv6
address.

Note: The IPv6/common search order is never used for the following APl socket

calls:

* getnetbyname
* getnetbyaddr
e setnetent

* getnetent

* endnetent

The IPve/common search order is as follows. The search ends at the first file found:

1.

5.

GLOBALIPNODES value

If defined, the resolver GLOBALIPNODES setup statement value is used. For a
descriition of the GLOBALIPNODES statement, see [‘Understanding resolvers’]

on page 13,
userid/jobname.ETC.IPNODES

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

hlg.ETC.IPNODES

hiq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hig is TCPIP by default.
DEFAULTIPNODES

If defined, the resolver DEFAULTIPNODES setup statement value is used. For a
description of the DEFAULTIPNODES statement, see [‘Understanding resolvers’]
b page 13

/etc/ipnodes

Protocol information: The protocol information supplies protocol related

information for the socket calls listed in|TabIe 3 on page 27

The search order used to access this configuration file is as follows. The search
ends at the first file found:

1.

userid/jobname.ETC.PROTO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

36 z/0S V1R4.0 CS: IP Configuration Guide

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlqg.ETC.PROTO

hiq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); Otherwise, hiq is TCPIP by default.

Services information: The services information supplies service information for
the socket calls listed in [Table 3 on page 27|

The search order used to access this configuration file is as follows. The search
ends at the first file found:

1. //SERVICES DD card
The data set allocated to the DDname SERVICES is used.
2. userid/jobname.ETC.SERVICES

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

3. hlq.ETC.SERVICES

hiq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

MVS-related considerations

MVS system symbols

Use of MVS system symbols in the PROFILE.TCPIP and OBEYFILE data sets is
automatically supported. This automatic support first tries to use hiperspace
memory files to perform the symbol translation, but if an error occurs, then a
temporary HFS file will be used. The temporary HFS file is created in either the
directory specified by the TMPDIR environment variable or, if the TMPDIR
environment variable is not defined, in the /tmp directory.

For MVS system symbols in other configuration files, such as TCPIP.DATA, use the
symbol translator utility, EZACFSMH1, to translate the symbols before the files are
read by TCP/IP. EZACFSM1 reads an input file and writes to an output file,
translating any symbols in the process.

Note: The input file and output file can be MVS data sets or HFS files, but do not
specify the same file for both the input and output files (this results in a
return code of 45 and no translation is attempted).

For more information about the use of MVS system services, refer to

initialization and Tuning Guide}

Following is the symbol translator JCL, found in hlq.SEZAINST(CONVSYM), which
is used to start EZACFSM1:

// JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1) ,MSGCLASS=A,CLASS=A
/1%

//* CS for 0S/390 IP

//* SMP/E distribution name: EZACFCSY

/1*

//* 5647-A01 (C) Copyright IBM Corp. 1998.
//* Licensed Materials - Property of IBM
/1*

Chapter 1. Configuration overview 37

//* Function: System Symbols Translator JCL

/1*

//* This JCL kicks off a utility that will read from

//* an input file that contains MVS System Symbols

//* and produce an output file which has those symbols

//* replaced with their substitution text, as defined

//* in the appropriate IEASYMxx PARMLIB data set; see MVS

//* Initializaton and Tuning Reference for rules about symbols.

/1*

//* This JCL can be run against any of the TCP/IP configuration

//* files that contain MVS System Symbols. An example of how it

//* could be used is this; a customer could have one base TCPIP.DATA
//* file containing MVS System Symbols which they edit and maintain.
//* They would run this utility against this one file the various
//* MVS systems to produce the TCPIP.DATA file for each different
//* system.

/1*

//STEP1 EXEC PGM=EZACFSM1,REGION=0K

//SYSIN DD DSN=TCP.DATA.INPUT,DISP=SHR

//*SYSIN DD PATH='/tmp/tcp.data.input’

//* The input file can be either an MVS file or an HFS file.
/1%

/1*

//SYSOUT DD DSN=TCP.DATA.OUTPUT,DISP=SHR

//*SYSOUT DD PATH='/tmp/tcp.data.output',PATHOPTS=(OWRONLY,OCREAT),

/1% PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

/1* The output file can be either an MVS file or an HFS file.
//*

/1% The output file cannot be the same file as the input file-
//* doing so will result in a return code of 45.

/1*

//* You can mix input and output file types (i.e., the input
//* can be an MVS file with the output an HFS file, or vice
//* versa).

//* Note: Other pathmodes for sysout may be used if needed.

The symbol translator utility can be used on any of the TCP/IP configuration files,
but because the PROFILE.TCPIP file is automatically translated during TCP/IP
initialization, there is no need to run the utility against that file.

Automatic restart manager (ARM)

Automatic restart manager is an MVS component that can automatically restart the
TCP/IP stack after an abnormal end (ABEND).

During initialization, TCP/IP automatically registers with the automatic restart
manager, using the following options:

REQUEST=REGISTER
ELEMENT=EZAsysclonetcpname

where:

* sysclone is a 1— or 2—character shorthand notation for the name of the MVS
system. Refer to[z/0S MVS Initialization and Tuning Guide|for a complete
description of the SYSCLONE static system symbol.

» fcpname is a 1— to 8—character name of the TCP/IP stack which registers with
the automatic restart manager. For example, if the SYSCLONE value is 02 and
the TCP/IP stack name is TCPCS, the resulting ELEMENT value is
EZA02TCPCS.

ELEMTYPE=SYSTCPIP
TERMTYPE=ELEMTERM

38 z/0S V1R4.0 CS: IP Configuration Guide

For more information about automatic restart manager, refer to|zZ0OS MVS Setting

Up a Sysplex.

Logging of system messages

Syslog daemon (syslogd) is a server process that must be started as one of the first
processes in your z/OS UNIX environment. TCP/IP server applications and
components use syslogd for logging purposes and can also send trace information
to syslogd. Servers on the local system use AF_UNIX sockets to communicate with
syslogd; remote servers use AF_INET sockets. zZOS CS components use the
local1, daemon, mail, user, and auth facilities names.

Note: Each application activates and deactivates traces in a slightly different
manner. For details, refer to the chapter on the individual application in this
document.

The syslog daemon reads and logs system messages to the MVS console, log files,
SMF, other machines, or users as specified by the configuration file. If syslogd is
not started, log data from some applications will be displayed on the MVS console.
For more information on syslogd, refer to|Chapter 3, “Customization” on page 101}

/tmp/???.syslog

Remote
SyslogD
MVS Console

AF_INET socket @
Server AF_INET socket .El;i]
AF_UNIX socke =]
Process 1 —
UDP Port 514 / [—)
— 5
SyslogD process ftmp/227.syslog

Server \ —
A
Process2 5 ynix socket /tmplsyslog.log
letc/syslog.conf

Remote
SyslogD

Figure 2. syslogd operation

Note: /tmp/???.syslog is the file specified in the syslogd.conf file.

shows the facilities used by z/OS CS functions which write messages
to syslogd. The Primary syslog facility column shows the syslog facility used for
most messages logged by the application. Some applications use other facilities for
certain messages. {Table 4 on page 40|also shows any additional facilities.

The syslogd facility uses a common mechanism for segregating messages.
on page 40

Chapter 1. Configuration overview 39

Table 4. syslogd facilities

Application syslogd record Primary syslog Other syslog facility
identifications facility

OTELNETD telnetd locall auth

SENDMAIL sendmail mail None

POPPER popper mail None

ORSHD rshd daemon auth

TCP/IP Configuration | Config daemon None

FTP Server ftpd, ftps daemon None

Traffic Regulation TRMD daemon None

Management

Daemon (TRMD)

ROUTED routed daemon None

NAMED named daemon None

Trap Forwarder trapfwd daemon None

Daemon

OREXECD rexecd daemon auth

Policy Agent Pagent daemon None

(PAGENT)

Service Level PASubA daemon None

Agreement SNMP

Subagent

SNMP Agent snmpagent daemon None

(OSNMPD)

PWCHANGE pwchange daemon None

Command

PWTOKEY pwtokey daemon None

Command

syslogd syslogd daemon None

DHCP Server dhcpsd user None

TIMED Daemon timed user None

TFTP Server tftpd user None

OMPROUTE omproute user None

OPORTMAP Server |oportmap daemon None

Accounting - SMF records

Installations may use Systems Management Facilities (SMF) records for various

purposes such as:

Performance management
Performance management includes the tasks that are related to verifying
that defined service levels are met, and if not, identifying possible causes.

Aggregated information about delivered service, structured by organizational units
(for which service levels have been defined) is needed to perform these tasks.
These reports are typically time series with varying levels of time intervals, ranging
from weeks through days to a time interval that matches the SMF interval. Some
examples of potential reports related to performance management are:

40 z/OS V1R4.0 CS: IP Configuration Guide

* TCP connection elapsed time per server port number per time of day (potentially
broken down on source IP address, or netmask)

* Number of TCP connections per server port number per time of day (potentially
broken down on source IP address, or netmask)

* Number of inbound/outbound bytes transferred in TCP connections per time of
day (potentially broken down in various ways: per destination or source port, per
destination IP address, netmask, or in total, etc.)

» TCP retransmission activity per time of day (potentially broken down per
destination IP address, or netmask)

* Number of outbound TCP connections per time of day (potentially broken down
per destination IP address, or netmask)

* Number of inbound/outbound UDP datagrams per time of day (potentially broken
down on server port number)

* Number of discards, error packets, and unknown protocol packets inbound and
outbound per time of day (potentially broken down per interface)

Capacity planning
Capacity planning includes tasks that are related to forecasting capacity in
terms of central processing power, memory, channel-based I/O subsystem,
network attachments, and network bandwidth. Such planning tasks are
based on analyzing trends for use of capacity during a preceding period
(typically one to two years), and applying forecasting metrics, along with
knowledge about planned launches of new applications or use of existing
applications, to this trend in order to predict capacity needs during the next
one to two year period. Some examples of potential reports related to
capacity planning are:

+ Total number of TCP connections per reserved server port number per
day including analysis of average and variations around average during
daily peak periods

+ Total number of UDP inbound/outbound UDP datagrams per reserved
server port number per day including average and variations around
average during daily peak periods

* Number of bytes and/or packets transferred inbound and outbound per
interface (LINK) per time of day (potentially broken down into unicasts,
broadcasts, and multicasts)

« Size of queue length per interface per time of day

Auditing
Auditing involves tasks that are related to identifying and proving that
individual events have taken place. Some examples of potential reports
related to auditing are:

» Detailed information about specific TCP connections or UDP sockets, IP
addresses, server/client identification, duration, number of bytes, etc.

» Details about activity that involves a specific client or server

» Details about a given application session based on server-specific SMF
recording, such as individual TN3270 sessions or FTP sessions

Accounting
Accounting involves tasks that are related to calculating how much each
individual user or organizational unit should be charged for use of the
shared central IS resources. Input to such calculations vary, but is often
based on CPU cycle use, data quantities, bandwidth usage, and memory
use. For TCP/IP additional metrics may be defined, such as type of service
used (FTP, LPD, Web server, etc), and TCP connection-related information

Chapter 1. Configuration overview 41

(number of connections, duration, byte transfer counts, etc). Some
examples of potential reports related to accounting are:

» Aggregated number of connections to a given server from a given source
in terms of a specific client IP address, or netmask

» Accumulated connect time to a given server from a given source in terms
of a specific client IP address, or netmask.

* Number of bytes transferred to or from a given source in terms of a
specific client IP address, or netmask.

» Application-level accounting information specific to each individual server,
for example:

— For FTP: number of transfer operations and bytes retrieved or stored
per user ID

— For TN3270: number of sessions and session-type
(TN3270/TN3270E/LINEMODE)

In general, SMF records are created for deferred processing and analysis. SMF
recording is generally not used for real-time monitoring purposes. In a TCP/IP
environment, real-time monitoring is implemented using the SNMP protocol and is
based on internal variables that are maintained by SNMP subagents, but on z/OS a
lot of the information that is written in SMF records is useful from a real-time
monitoring perspective, too.

As can be seen from the above, all disciplines require detailed data as input.
Depending on the discipline, certain levels of aggregation is performed on the raw
detailed data in order to perform the tasks of that discipline. The objective of the
TCP/IP product is to define and generate the lowest level of detail that is needed by
all disciplines. How to aggregate and the actual aggregation is performed by other
products, such as Performance Reporter for z/OS (PR), MVS Information Control
System (MICS), or SAS-based tools or, in many cases, customer-written programs.

TCP/IP— produced SMF records should not be viewed isolated. Other components
in MVS produce SMF records for the same purposes as those produced by TCP/IP.
An installation is likely to combine information from a series of subsystems in
performing detailed performance, or capacity planning. SMF records with
information about use of CPU resources and memory resources per address space
is, for example, produced by other components in MVS, and TCP/IP produced SMF
records should not duplicate that information.

The events that trigger SMF records to be written and the information included in
the SMF records must accommodate the intended purposes. There can be multiple
purposes for given SMF records.

SMF records can be cut at multiple levels in the TCP/IP protocol stack, and the type
of information that can be included depends on where the SMF record is created:

* At the IP and interface layer we know about ICMP activity, IP packet
fragmentation and reassembly activity, IP checksum errors, IGMP activity, and
ARP activity. At this layer, it is difficult to relate the information to specific users
(remote clients, local socket address spaces, and so on), so from an accounting
point of view, this information is not very interesting. From a performance and
capacity planning point of view, this information is of interest because it allows
the installation to aggregate network-layer activity to physical interfaces, which is
an important aspect of both performance and capacity management.

» At the transport protocol layer, we know about IP addresses, port numbers, and
host names. For TCP related work, we know about connections and information

42 7/0S V1R4.0 CS: IP Configuration Guide

that is related to TCP connections, such as byte counts, connection times,
reliability metrics, and performance metrics. For UDP related work, each UDP
datagram is a separate entity, and the only way we can aggregate information for
UDP is on a UDP socket-level, where we could cut SMF records every time a
UDP socket is closed.

» At the application layer, we know more details about what goes on, but every
application is different and it requires separate SMF record definitions and ability
to write the SMF records to implement application-layer SMF recording. We
currently do it for the stack Telnet server and the FTP server, but not for any
other servers.

SMF accounting issues (Record type 118)
Many installations rely on the MVS component SMF for job accounting and for

performance analysis. TCP/IP can create SMF type 118 records for certain events.
If you are running multiple stacks, SMF does not always allow you to distinguish
among them. Consider the following issues:

» There is no stack identity in SMF type 118 records. SMF records that are written
by the system address space or by standard servers may be identified as
belonging to one stack or another, based on address space naming conventions.

» SMF records written by client address spaces cannot be identified as belonging
to a single stack based on the address space naming conventions used in
standard servers.

* The only technique currently available to distinguish among records written by
various client address spaces is to assign unique SMF type 118 record subtype
intervals to each stack:

— FTP server: One or nine subtypes in FTP.DATA
— Telnet server: Two subtypes on TELNETPARMS
— API: Two subtypes on SMFPARMS
— FTP, Telnet client: One subtype on SMFPARMS
If you choose to assign subtypes, there will be an obvious impact on your local

accounting programs. SMF type 118 subtype changes and additions must be
coordinated with persons responsible for managing the use of SMF.

SMF type 118 records do not support IPv6 addresses. Thus, if you choose to
exploit IPv6 in your environment, migrate your SMF processing to use the SMF type
119 records, which do support IPv6 addresses.

An external mapping (EZASMF76 macro) is available for customers to parse the
SMF type 118 records that TCP/IP generates. EZASMF76 produces assembler level
DSECTs for the Telnet (server and client), FTP (server and client), and APl SMF
records.

Note: If the BPX.SMF facility is defined and SMF records are to be written by
syslogd, the user ID with which syslogd runs must be permitted to BPX.SMF.

To create the Telnet SMF Record layout, code:
EZASMF76 TELNET=YES

To create the FTP SMF Record layout, code:
EZASMF76 FTP=YES

To create the APl SMF Record layout, code:
EZASMF76 API=YES

Chapter 1. Configuration overview 43

SMF accounting issues (Record type 119)
SMF type 119 records contain unique stack identification sections designed to

eliminate the confusion of the type 118 records. They provide uniformity of date and
time (UTC), common record format (self-defining section and TCP/IP identification
section) and room to expand to IPv6 addresses and expanded field sizes (64 bit
versus 32 bit) for some counters. The kinds of SMF type 119 records available are:

* TCP connection initiation and termination

* UDP socket close

» TCP/IP, interface and server port statistics

* TCP/IP stack start/stop

* FTP server transfer completion

* FTP server logon failure

* FTP client transfer completion

* TN3270 server session initiation and termination
» Telnet client connection initiation and termination.

The SMF type 119 records utilize a common structure. Each record is organized as
follows:

* SMF header

» Self-defining section containing pointers to:
— TCP/IP identification section (identifies system, stack etc)
— Sections containing the data for the record

An external mapping (EZASMF77 macro) is available for customers to parse the
SMF type 119 records that TCP/IP generates.

For more detailed information refer to(z20S Communications Server: IH
[Configuration Reference,

For more information about SMF, refer to[z/0OS MVS System Management Facilities|

[}

Security considerations

z/OS CS relies on a System Authorization Facility (SAF) to protect several
resources:

» Started tasks require access to a STARTED resource. This is documented in the
server information in the [zZ0S Communications Server: IP Configuratior]
. Also, refer to SEZAINST(EZARACF) for SAF authorizations required
for the TCP/IP stack and servers started tasks.

» Restricting access to a network, subnetwork or particular IP address in the
network is provided by resources in the SERVAUTH class. Using NETACCESS
statements, z/OS CS can map networks, subnetworks and IP addresses to SAF
resource names. Users that are not permitted access to a particular SAF
resource are not allowed to communicate with the corresponding network,
subnetwork, or IP address. Refer to the NETACCESS statement in
Communications Server: IP Configuration Reference
Access Authorization (SERVAUTH) (optional)” on page 143|for more information.

Restricting users’ ability to run applications that access specific TCP and UDP
ports is also provided by resources in the SERVAUTH class. z/OS CS provides a
one-to-one mapping between port numbers and SAF resource names. Refer to
the PORTACCESS statement in the zZOS Communications Server: IP

44 7/0S V1R4.0 CS: IP Configuration Guide

Configuration Reference or|[“Setting up SAF Server Access Authorization|
(SERVAUTH) (optional)” on page 143 for more information.

Also, similar to PORTACCESS, z/OS CS ensures a user attempting to connect to
a TN3270 secure port is allowed access to the port. This support is used in
conjunction with TN3270 SSL client authentication support. Refer to the
CLIENTAUTH statement in the [z70S Communications Server: IP Configuratiod
Reference or ['Setting up SAF Server Access Authorization (SERVAUTH)|
(optional)” on page 143|for more information.

Restricting access to the TCPIP stack is also controlled under z/OS CS by
defining a resource in the SERVAUTH class. Refer to ['Setting up SAF Server|
|Access Authorization (SERVAUTH) (optional)” on page 143|for more information.

* Restricting access to operator commands is provided through the OPERCMDS
resource. z/OS CS verifies that users have access to specific OPERCMDS
resources before executing the operator command. Refer to the operator
commands information in the [zZ0S Communications Server: IP Systent
Administrator's Commands|or [‘Setting up SAF Server Access Authorization|
(SERVAUTH) (optional)” on page 143 for more information about limiting access
to z/0OS CS commands.

* Restricting access to the TSO and UNIX shell Netstat command is provided by
SERVAUTH resources. z/OS CS verifies that users have access to specific
SERVAUTH resources before executing the Netstat command. Refer to the
Netstat command information in the [zZ0S Communications Server: IP System
[Administrator's Commands|for more information about limiting access to Netstat
command. The security product resource names in the SERVAUTH class do not
apply to DISPLAY TCPIP,,NETSTAT command. If you wish to restrict access to
DISPLAY TCPIP,,NETSTAT command, you can do so using standard operator
command restriction facility, OPERCMDS class profiles. Refer to

[Planning: Operationd for more information.

UNIX System Services security considerations

This section describes some of the changes that have a product-wide effect. For
descriptions of changes that affect specific servers or components, see the sections
of this document that describe each server and component.

Requirement for an OMVS segment

Many TCP/IP Services components in z/OS CS now exploit zZOS UNIX services in
both the native MVS environment and in the z/OS UNIX environment. For example,
all TCP/IP socket APIs and TCP/IP applications (whether they are provided by z/OS
CS, 0S/390, other IBM and non-IBM products, or written by users) now make use
of z/OS UNIX services.

Use of z/OS UNIX services requires a z/OS UNIX security context, referred to as an
OMVS segment, for the user ID associated with any unit of work requesting these
services. In other words, most user IDs requiring access to TCP/IP functions now
require an OMVS segment to be defined in Resource Access Control Facility
(RACF).

Note: The tasks, examples, and references in this section assume that you are
using the z/OS CS Security Server (RACF). If you are using a security
product from another vendor, read the documentation for that product for
instructions on task performance.

To satisfy the requirement for an OMVS segment in RACF, do one of the following:

Chapter 1. Configuration overview 45

 Identify all the users in your environment that use TCP/IP services and then
define OMVS RACF segments for the associated user IDs.

* Use the default OMVS segment support provided by RACF and z/OS UNIX for
users and groups.

The default OMVS segments reside in the USER profile and GROUP profile. The
names of these profiles are identified by the installation, using the
BPX.DEFAULT.USER facility class profile. The application data field in the class
profile contains the user ID, or the user ID/group ID, that is used to access the
default OMVS segments for users and groups, respectively.

Notes:

1. An HFS must be defined for the OMVS segment, and the home directory must

exist.

2. If you use a trusted or privileged started task in ICHRINO3 or the STARTED
class (especially a generic entry), be careful in assigning a default UID and GID
with facility class BPX.DEFAULT.USER. Whenever trusted or privileged is
specified, all default tasks have superuser authority.

To set up default OMVS segments, follow the steps in the [Table 5

Table 5. Setting up default of OMVS segment

Task

Details

Define a Group ID (GID) to the system to be
used as an anchor for a default OMVS group
segment.

Use the following command:
ADDGROUP DEFGRP OMVS(GID(777777))

Make the GID unique so that it is easily identifiable. The GID can be
either very high or very low.

The other fields related to the GID are not likely to be used for
anything.

Define a user ID (UID) to be used as an
anchor for the default OMVS user segment.

Use the following commands:

ADDUSER DEFUSR DFLTGRP(DEFGRP) NAME ('DEFAULT USER')
OMVS(UID(999999) HOME('/') PROGRAM('/bin/sh'))

Note: To avoid giving superuser authority, do not use 0 as the UID.

When defining a UID, consider the following:

« UID should be unique so that it is easily identifiable. The number
can be very high or very low.

* HOME — Use one of the following options when defining the home
directory for the default user:

— Define the HOME directory as the root (/). The users do not
have write access. They do not need to update their home
directory.

— Define the HOME directory in the /tmp directory.

— Define a directory as you would for any other user. This directory
is then used concurrently by many users that do not have an
OMVS segment. (Not recommended)

* PROGRAM defines the default shell in this field.

The other fields related to this UID are not likely to be used for
anything.

46 z/OS V1R4.0 CS: IP Configuration Guide

Table 5. Setting up default of OMVS segment (continued)

Task

Details

Set up a default for the USER OMVS
segment or set up a default UID and GID.

To set up a default for the USER OMVS segment only, create a
facility class profile named BPX.DEFAULT.USER, and then specify
the default UID in the application data field. Use the following
commands:

RDEFINE FACILITY BPX.DEFAULT.USER APPLDATA('DEFUSR')
SETROPTS RACLIST(FACILITY) REFRESH

Note: You cannot set up a default GROUP OMVS segment alone.

To set up a default UID and GID, create a facility class profile
named BPX.DEFAULT.USER, and then specify the default UID and
GID in the application data field. Use the following commands:

RDEFINE FACILITY BPX.DEFAULT.USER APPLDATA('DEFUSR/DEFGRP')
SETROPTS RACLIST(FACILITY) REFRESH

Be aware that the facility class must be activated. In addition, the
USER profile of the default UID and the GROUP profile of the default
GID must exist, and must contain OMVS segments with a UID and
GID, respectively.

Note: RACF does not check to ensure that the application data points
to a valid UID or UID and GID, or that the USER and GROUP profiles
contain OMVS segments with the required UID and GID.

The following process shows how the BPX.DEFAULT.USER facility class profile

works:

1. A user requests a UNIX service, which is serviced by the kernel.

2. The kernel calls the security product to extract the UID, GID, HOME, and
PROGRAM information.

3. The security product attempts to extract the OMVS segment associated with the
user. If the user is not defined, the security product attempts to extract and use
the OMVS segment for the default user that was listed in the
BPX.DEFAULT.USER profile.

A similar process is followed to obtain a GID when the user default group does not
have an OMVS segment.

Authorization of TCP/IP started task user ID

The TCP/IP address space operates as a transport provider for the INET physical
file system. For this to occur, the TCP/IP system address space must connect to
z/OS UNIX and become a z/OS UNIX process. Therefore, the started task UID that
is assigned to the TCP/IP system address space must have a valid OMVS

segment.

As a transport provider, the TCP/IP address space requires superuser privileges in
z/OS UNIX. Define the TCP/IP system address space started task UID as UID=0, or
define the TCP/IP system address space as a trusted environment in the RACF
started class profile for the TCP/IP system address space. Use the following
command to assign an OMVS segment to the TCP/IP started task user ID specified

as UID=0:

ALU tcpip_userid OMVS(UID(0) HOME(/) PGM(/bin/sh))

Chapter 1. Configuration overview 47

Other user IDs requiring z/OS UNIX superuser authority

When a started procedure is used to start the following servers, daemons, and
agents, the user must be a superuser [UID(0)] or permitted to BPX.SUPERUSER
class profile.

* File transfer protocol (FTP) daemon

* Domain name system (DNS) server

* OROUTED server

* SNMP agent (OSNMPD)

* Network Print Facility (NPF) queue manager

The following daemons are managed by the inetd server, and the user specified in
file /etc/inetd.conf must be defined to RACF with UID(0). For details on inetd, refer
to |z/OS UNIX System Services Planningl For details on individual daemons, refer to
the [z/0S Communications Server: IP Configuration Reference,

» z/OS UNIX remote execution daemon (REXECD)

+ z/OS UNIX remote shell daemon (RSHD)

¢ z/OS UNIX Telnet daemon

BPX.DAEMON facility class

Certain z/OS CS TCP/IP Services servers need to change the security environment
of the process in which they currently execute. For example, the FTPD daemon
creates a new z/OS UNIX process for every FTP client connecting to it. After the
new process is created, the daemon changes the security environment of the
process so that it is associated with the security context of the logged-in user. The
RACEF facility class resource BPX.DAEMON is used for this purpose.

Table 6. BPX.DAEMON
Task Details

Decide if you want to activate the BPX.DAEMON level of | This is not required. It is recommended, however,
security by reviewing the section about BPX.DAEMON because it provides additional security in the zZOS UNIX

authority in [0S UNIX System Services Planning to environment.

determine whether this level of security is appropriate for

your installation. The following TCP/IP Services servers and daemons in
z/OS CS change the security environment of their
processes:

+ z/OS UNIX TELNETD
+ z/OS UNIX RSHD
» z/OS UNIX REXECD

« FTPD
Plan the time at which you define BPX.DAEMON As soon as you define the BPX.DAEMON resource, MVS
carefully. will not let programs change the security environment

unless the programs are retrieved from a
program-controlled library and unless the UID under
which the program executes has access to

BPX.DAEMON.
If you decide not to define the BPX.DAEMON facility This is sufficient for processing. It is described in [‘Otheﬂ
class, assign UID(0) for the UIDs associated with these ||user IDs requiring zZOS UNIX superuser authority”

servers and daemons.

48 2z/0S V1R4.0 CS: IP Configuration Guide

Table 6. BPX.DAEMON (continued)

Task

Details

If you decide to define the BPX.DAEMON facility class, To define the BPX.DAEMON facility class profile in RACF,
grant READ access to this profile for the UIDs associated | use the following command:

with the listed daemons. A|SO, enable BPX.DAEMON RDEFINE FACILITY BPX.DAEMON UACC(NONE)

security by defining the BPX.DAEMON facility class

profile in RACF

Note: You must specify the name BPX.DAEMON in this
command. Substitutions for the name are not allowed.

If all the required conditions are not met, your server programs will fail as soon as
you define BPX.DAEMON. If the server programs fail, delete BPX.DAEMON, and
the setup reverts to its previous state. Check all your definitions, and make the
required corrections before trying to define BPX.DAEMON again.

If this is the first facility class profile that your installation is using, activate the
facility class using the following commands:

SETROPTS CLASSACT(FACILITY) GENERIC(FACILITY) AUDIT(FACILITY)
SETROPTS RACLIST(FACILITY)

If you start server programs using MVS start commands or from shell scripts that
execute after startup of z/OS UNIX, you must allow the UIDs access to the
BPX.DAEMON facility class resource. The following example shows the UID
(ftpd_user_ID) with which you can start the FTPD daemon:

PERMIT BPX.DAEMON CLASS(FACILITY) ID(ftpd user ID) ACCESS(READ)

Authorization to change the user security environment is granted only if both of the

following two conditions are true:

» The server program is executing under a UID that has READ permission to the
BPX.DAEMON facility class profile and a UID=0.

» All programs running in the address space have been retrieved from a controlled
library. Program control is discussed in the following section.

Program control

In a zZOS UNIX environment, there are additional security concerns related to the
HFS and the loading of programs that are considered trusted. Program control
facilities in RACF and z/OS UNIX provide a mechanism for ensuring that the z/OS
UNIX program loading process has the same security features that APF
authorization provides in the native MVS environment.

It is recommended that you enable program control in your installation. If you define
the BPX.DAEMON facility class, then you must enable program control for certain
z/OS CS load libraries. Review the section on program control in
[System Services Planning|to decide whether program control is appropriate for your
installation.

To enable program control, follow the tasks in the following table.

Table 7. Program control

Task

Details

Activate program control. Use the following command:

SETROPTS WHEN (PROGRAM)

Chapter 1. Configuration overview 49

Table 7. Program control (continued)

Task Details

Set the universal access for Use the following commands to create RACF data set profiles:
public library data sets (those in | Appsp ' cee.version.SCEERUN' UACC(READ)

LINKLSTxx) to READ. This ADDSD 'SYS1.LINKLIB' UACC(READ)

allows access to the controlled | ADDSD 'TCPIP.SEZALOAD' UACC(READ)

programs and any other ADDSD 'TCPIP.SEZATCP' UACC(READ)

program in those libraries. (MVS
opens the LNKLSTxx libraries
during IPL and makes these
programs public. However,
users cannot make changes.)

Ensure all load modules that If the MVS contents supervisor loads a module from a noncontrolled library, the
are loaded by the address space becomes dirty and loses its authorization. To prevent this from
BPX.DAEMON servers into an | happening, define all the libraries from which load modules can be loaded as
address space come from program controlled. At a minimum, this should include the C run-time library, the
controlled libraries. TCP/IP Services SEZALOAD and SEZATCP libraries, SYS1.LINKLIB, and any load

libraries containing FTP security exits.

Use the following commands:

RDEFINE PROGRAM * ADDMEM('SYS1.LINKLIB'/'volser'/NOPADCHK) UACC(READ)
RALTER PROGRAM = ADDMEM('cee.version.SCEERUN'/'volser'/NOPADCHK) UACC(READ)
RALTER PROGRAM = ADDMEM('TCPIP.SEZALOAD'/'volser'/NOPADCHK) UACC(READ)
RALTER PROGRAM = ADDMEM('TCPIP.SEZATCP'/'volser'/NOPADCHK) UACC(READ)
RALTER PROGRAM = ADDMEM('db2.DSNLOAD'/'volser'/NOPADCHK UACC (READ)

RALTER PROGRAM = ADDMEM('db2.DSNEXIT'/'volser'/NPPADCHK UACC(READ)

RALTER PROGRAM = ADDMEM('ftp.userexits'/'volser'/NOPADCHK UACC(READ)

L T T

Note: If you define the load libraries as controlled, do not specify a universal
access of NONE for the PROGRAM resources. If you do so for your
SYS1.LINKLIB programs, you cannot IPL your MVS system. Be aware also that in
, the volser specification is optional.

Activate RACF changes. Use the following command:
SETROPTS WHEN(PROGRAM) REFRESH

Defining TCP/IP as a UNIX System Services physical file system (PFS)

As described in|[z/0OS Communications Server: IP Migratior}, the TCP/IP Services
stack in z/OS CS must be defined as a z/OS CS UNIX System Services PFS
before it can be started. This involves updating the BPXPRMxx parmlib member.
The following sample definition in BPXPRMxx defines TCP/IP as a z/OS CS UNIX
System Services PFS, where the network layer is IP Version 4 (IPv4) and
communication at the sockets layer is through the AF_INET family:

FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME (AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS (60000)
TYPE(INET)

The sample definition above shows how to define a single TCP/IP stack as IPv4
only. To define a single TCPIP stack as both IPv4 and IPv6, add an additional
NETWORK statement in the BPXPRMxx member. The following sample definition in
BPXPRMxx defines TCP/IP as a z/OS CS UNIX System Services PFS, where the
network layer is IP Version 6 (IPv6) and communication at the sockets layer is
through the AF_INET®6 family:

50 z/0S V1R4.0 CS: IP Configuration Guide

NETWORK DOMAINNAME (AF_INET6)
DOMAINNUMBER (19)
MAXSOCKETS (60000)
TYPE (INET)

The BPXPRMxx member contains additional z/OS CS UNIX System Services
parameters that are crucial to the proper operation of TCP/IP. Carefully examine
and specify these parameters:

+ MAXPROCSYS — Specifies the maximum number of z/OS UNIX processes that
the system allows.

« MAXPROCUSER — Specifies the maximum number of processes associated
with a single zZOS CS UNIX System Services user ID.

« MAXUIDS — Specifies the maximum number of z/OS UNIX user IDs that can
operate concurrently.

* MAXFILEPROC — Specifies the maximum number of z/OS CS UNIX System
Services file descriptors a z/0S CS UNIX System Services process can allocate.
This includes access to both HFS files and z/OS CS UNIX System Services
socket descriptors. In z/OS CS, most TCP/IP applications access z/OS CS UNIX
System Services sockets, either directly or indirectly, using the TCP/IP socket
APIs. You should set the MAXFILEPROC value high enough to accommodate
the largest number of sockets a single TCP/IP application (or zZOS CS UNIX
System Services process) can allocate.

Be aware that the tn3270 Telnet server is exempt from the limit specified in this
parameter. The tn3270 Telnet server can obtain the maximum number of socket
connections for a single z/OS CS UNIX System Services process.

« MAXPTYS — Specifies the maximum number of pseudo-terminals for the
system.

* MAXTHREADTASKS — Specifies the maximum number of MVS tasks that a
single process can have concurrently active.

« MAXTHREADS — Specifies the maximum number of threads that a single
process can have concurrently active.

« MAXQUEUEDSIGS — The sum of MAXQUEUEDSIGS and MAXFILEPROC
multiplied by 2 is the system wide maximum for the total number of
asynchronous z/OS UNIX socket calls that can be outstanding. When specifying
this number, consider the following:

— For every TCP/IP connection that the TN3270 Telnet server has, there is an
asynchronous z/OS UNIX socket call outstanding. This is true for both
TN3270 and TN3270E clients.

— Any TCP/IP application, IBM or vendor supplied, that uses either the z/OS
UNIX Assembler Callable Services asyncio call or the TCPIP provided
Sockets Extended asynchronous API could have one or more outstanding
asynchronous socket calls.

The MAXSOCKETS() parameter specifies the total number of zZOS CS UNIX
System Services sockets that can be active at any one time. You must ensure that
this specification is large enough to accommodate your installation’s workload. For
example, each connection to your tn3270 Telnet server or FTP server requires one
z/OS CS UNIX System Services socket. Once the maximum number of sockets is
allocated, then no more Telnet sessions, FTP sessions, or other applications that
require z/OS CS UNIX System Services sockets can be started.

Note: If multiple NETWORK statements are defined, MAXSOCKETS can be
specified for each NETWORK statement and will be enforced separately.

Chapter 1. Configuration overview 51

References
For details on the BPXPRMxx member, please refer to the following guides:
* |z/0S UNIX System Services Planning|
« |z/0S MVS Initialization and Tuning Reference

z/0OS UNIX System Services File System Interface Reference{

Performance considerations

Follow the guidelines found in the [z/0S MVS Initialization and Tuning Reference If
your installation is running Workload Manager, follow the guidelines found in IE/OQ
IMVS Planning: Workload Management

It is necessary that VTAM, TCPIP and some associated server applications are able
to obtain cycles in order to maintain their network presences. In general, we
recommend VTAM and TCPIP have a higher dispatching priority than the
applications that use their services. Server applications such as OMPROUTE,
OROUTED and FTPD should be set at or just below TCPIP’s value. If running
WLM, these tasks should be assigned to the SYSSTC service class. Additionally,
making these tasks non-swappable will assure that they will be available during
periods of high CPU usage.

| Fast path support

| For applications that have extremely strict communications path-length

| requirements, an optional extension has been provided to further reduce overhead
I resulting from the z/OS UNIX-to-TCP/IP stack communications. This extension is

I only available to applications using the UNIX System Services (USS) Callable

I Services Socket API or the C/C++ socket APl supported by the Language

I Environment (LE). It is not available to applications using the native MVS socket

I APIs (such as C/C++, EZASMI macro, EZASOKET, REXX, or CICS socket APIs)

I provided by the Communications Server. Exploitation of this extension is entirely

| optional.

This feature can be activated for an entire USS process using the z/OS UNIX
_BPXK_INET_FASTPATH environmental variable. The value of this variable
determines whether a socket application is marked fast path. A C/C++ LE
application can set the variable by invoking the setenv() service, or you can export
the variable to the z/OS UNIX shell environment before the socket application is
invoked. An application using the USS Callable Services APIs can set this variable
using the BPX1ENV service.

I Note: z/OS UNIX environmental variables have a process-wide scope only—that is,
| they usually affect a single MVS address space only. It is possible, however,
I to have multiple UNIX processes within a single address space. In this

I scenario, the setting of this environmental variable might vary for each

I process within the address space. It is not a problem if some of your

| applications exploit fast path services, while others do not. When a socket

| application is marked as fast path, the communications overhead is reduced
I on the following socket syscalls:

I
I
|
I

e -send()
* -recv()
* - sendto()

* - recvfrom()

52 z/0S V1R4.0 CS: IP Configuration Guide

* - sendmsg()
* - recvmsg()

Although applications are more efficient when using the environmental variable,
they are not XPG compliant, and POSIX signals are not supported. Applications can
be interrupted only with the SIGKILL terminating signal, and they cannot be
debugged using the interactive z/OS UNIX dbx debugger. You can, however,
develop and test an application using the dbx debugger without setting the
environmental variable, and then execute the application in production with the
environmental variable set. Also, note that applications using the USS
asynchronous socket interface (BPX1AIO) to invoke synchronous socket operations
(that is, setting the AioSync bit in the AIOCB) cannot use the BPX1AIO service to
cancel outstanding synchronous calls on sockets that are marked as fast path.
Doing so will cause the cancel operation to hang.

For environments that do not use common INET, the value of this variable should
be set to the name specified on the FILESYSTYPE TYPE() parameter in the
BPXPRMxx parmlib member.

For common INET environments, the value used to set the environmental variable
depends on whether the application is using the TCP or UDP protocols. In a
common INET environment, the variable should be set as follows:

» For UDP applications, it should be set to the name of the TCP/IP stack as
specified on the SUBFILESYSTYPE NAME() parameter in the BPXPRMxx
parmlib member. The socket application is explicitly associated with the TCP/IP
stack named in the environmental variable (that is, the TCP/IP stack name). This
means that the socket application can communicate with partners that are
accessible only through the specific TCP/IP stack interfaces. For UDP, the
environmental variable effectively overrides the support provided by common
INET. You should take this contingency into account before activating fast path
for a UDP-based application.

Note that if the UDP application already establishes affinity to a specific TCP/IP
stack using other means, such as setting the
_BPXK_SETIBMOPT_TRANSPORT environment variable, using setibmopt(),
BPX1PCT, and so on, the setting of the fast path variable is ignored. As a result,
UDP applications that require fast path support and affinity to a specific TCP/IP
stack must do so using the _BPXK_INET_FASTPATH environmental variable.

» For TCP applications, the variable can be set to an asterisk (*), indicating that
any TCP/IP stack in the common INET configuration can be used. This allows all
TCP/IP stacks that support the fast path model to obtain the fast path
performance benefits automatically. TCP servers are not bound to a specific
TCP/IP stack, even if they specify a specific TCP/IP stack name on the
environmental variable; instead, they can listen for inbound connections across
all TCP/IP stacks. When a connection arrives from the TCP/IP stack named in
the environmental variable [at the time of the accept()], it is automatically marked
as fast path. Connections that arrive from TCP/IP stacks that are not named by
the current environmental variable value are not marked as fast path.

Note, however, that certain TCP/IP API functions, such as the resolver services
[that is, gethostbyname(), gethostbyaddr(), getaddrinfo(), and getnameinfo()] and
the network interface identification services [that is, if_nameindex(),
if_nametoindex(), and if_indextoname()] use UDP sockets internally to perform
their processing. Consequently, if a specific TCP/IP stack name is specified on
the environmental variable, these hidden UDP sockets will only be associated
with the named TCP/IP stack, which might have undesirable effects. For
example, any resolver API queries resulting in communications with a domain

Chapter 1. Configuration overview 53

name server will occur only over the specified TCP/IP stack. As a result, it is
strongly recommended that TCP applications set the environmental variable to
the special asterisk (*) value. If the application requires affinity to a specific
TCP/IP stack, it should do so using any of the facilities that are provided by USS,
such as setibmopt(), BPX1PCT, and so on. For more details on establishing
affinity to a specific TCP/IP stack, refer to|z/OS UNIX System Services Planning

Applications can also enable fast path processing for a single socket by issuing the
locc#FastPath IOCTL for the socket, using the w_ioctl() or the BPX110C APIs. Note
that this IOCTL is only effective if it is issued against a socket that is already
associated with a specific TCP/IP stack. Sockets are considered associated with a
specific TCP/IP stack if they meet any of the following conditions:

* The application has explicit process affinity to a specific TCP/IP stack [that is, by
setting the _BPXK_SETIBMOPT_TRANSPORT environmental variable, using
setibmopt(), BPX1PCT, and so on].

« TCP/IP stack affinity has been explicitly established for this socket (that is, using
the SIOCSETRTTD IOCTL).

* Abind() has already been issued for the socket using a specific IP address (that
is, not INADDR_ANY).

* ATCP (that is, streams) socket that is connected. This includes TCP sockets that
are returned as a result of accept() or sockets that a connect() was issued for.

The locc#FastPath constant is defined in the BPXYIOCC. Note that this IOCTL
requires a 4-byte argument as input. This argument should be set to a nonzero
value to activate fast path, or a zero value to disable fast path on the specified
socket.

Considerations for multiple instances of TCP/IP

The z/0OS Communications Server TCP/IP stack is a multiple-processor capable
stack, which means that it can concurrently exploit all available processors on a
system. Starting multiple stacks will not yield a significant increase in throughput.

In addition, running multiple zZOS Communications Server TCP/IP stacks requires
additional system resources, such as storage, CPU cycles, and DASD. It also adds
a significant level of complexity to the system administration tasks for TCP/IP.

For these reasons, it is suggested that in most cases you use the INET
configuration, which supports a single TCP/IP stack. However, there are some
special situations where running multiple stacks can provide a benefit. For example,
you might want to run two separate stacks for intranet and Internet traffic, or
AnyNet® Sockets over SNA in conjunction with one or more TCPIP stacks.

Common INET physical file system (CINET PFS)

If you wish to run multiple z7OS Communications Server TCP/IP stacks
concurrently, you must use the Common INET (CINET) configuration. In this
configuration, up to a maximum of eight TCP/IP stacks can be active at any time.

When the CINET configuration is used, the CINET PFS is inserted between the LFS
and the TCP/IP PFS for each stack. The CINET PFS maintains an internal copy of
each TCP/IP stack’s IP configuration, so that it can preroute a socket call to the
correct TCP/IP stack. This allows most socket programs to run with multiple stack

54 z/0S V1R4.0 CS: IP Configuration Guide

support with no change to the application. In addition, CINET supports IPv6, and is
capable of supporting underlying TCP/IP stacks in IPv4/IPv6 dual mode or in
IPv4-only mode.

You can specify your choice of INET (single stack) or CINET (multiple stack)
support on the NETWORK, DOMAINNAME, FILESYSTYPE, and
SUBFILESYSTYPE statements of SYS1.PARMLIB(BPXPRMxx). For more
information about the BPXPRMxx statements, refer to[|“Specifying BPXPRMxx
values for a CINET configuration” on page 64| and |z/0S UNIX System Serviceq

Planning.

Port management overview

When there is a single transport provider, and the relationship of server to transport
provider is 1:1, port management is relatively simple. Using the PORT statement,
the port number can be reserved for the server in the PROFILE.TCPIP for that
single transport provider.

Port management becomes more complex in a CINET environment where there are
multiple transport providers (multiple instances of TCP/IP) and a potential for
multiple combinations of the same server (for example, z/OS UNIX and
TN3270/TN3270E Telnet).

In a multiple transport provider environment, the following questions need to be
answered for each server in an installation:

* |s the server generic so that it can communicate with multiple TCP/IPs or does
the server have an affinity for one instance of the transport providers and can
only communicate with one TCP/IP?

* How can ports be reserved across multiple transport providers? When is the port
reservation determined by MVS rather than by the job name, procedure name, or
user ID?

* How can you synchronize between BPXPARMS and PORTRANGE for
ephemeral port reservation?

* How can TCP/IP distinguish between two different instances of Telnet (z/OS
UNIX Telnet and TN3270/TN3270E Telnet)?

Generic server versus server with affinity for a specific transport
provider

The following sections describe the differences between generic servers and
servers with affinities for specific transport providers.

Generic server: A generic server, a server without an affinity for a specific
transport provider, provides service to any client on the network. (See
) FTP is an example of a generic server. The transport provider is merely a
connection linking client and server. The service File Transfer is not related to the
internal functioning of the transport provider, and the server can communicate
concurrently over any number of transport providers.

Chapter 1. Configuration overview 55

OE FTPD

Server
(oftpd)
HFS
or
MVS
C-INET | Data Set

| Tcriea | | TcpipB | | TePIPC

IP
Network

FTP
Client

Figure 3. Generic server

Server with an affinity for a specific transport provider: When the service is
related to the internal functioning of the transport provider (for example, Telnet,
OMPROUTE, OSNMPD, and the command, onetstat), there must be an explicit

binding of the server application to the chosen transport provider. (See
page 57|) There must also be a way to specify the single transport to be chosen.

56 z/0S V1R4.0 CS: IP Configuration Guide

OMPROUTE

| N

TCPIPA

IP Routin;

Figure 4. Server with affinity for a specific transport provider

With the exception of applications that use the socket API provided by TCP/IP, other
IBM-supplied applications that use the z/OS UNIX socket APl and that must bind to
a specific transport provider use the z/OS UNIX socket call setibmopt () (refer to
[z/OS C/C++ Run-Time Library Reference) to specify which TCP they have chosen.
A C function __iptcpn(), described in the [zZ0S C/C++ Run-Time Library Reference,
enables the application to search the TCPIP.DATA file to find the name of the
specific TCP/IP. (See) An application that uses the z/OS LE runtime can
also establish stack affinity by setting the environment variable
_BPXK_SETIBMOPT_TRANSPORT.

Application X TCPIP.DATA

_iptepn() - TCPIP25S
setibmopt(TCPIP25S
AN

2
OpenEdition MVS Common - INET PFS I

C-INET “binds” Application X socket Y to this stack

[Tcpip2ss| [TcPiP2sA| |TCPIP253||

Figure 5. Example of binding an application to a specific transport provider

Chapter 1. Configuration overview 57

Generic servers in a CINET environment

In z/OS CS, you can configure multiple TCP/IP stacks in a single MVS image using
the CINET feature. In a CINET configuration, an application using the z/OS UNIX
socket interface can get transparent access to all the TCP/IP protocol stacks
configured under CINET. For example, when an application coded to z/OS UNIX
sockets performs a SOCKET/BIND/LISTEN in a CINET environment, the request is
propagated by CINET to all the TCP/IP stacks. This application can then service
client requests that arrive into any of the configured TCP/IP stacks without having
any awareness of this fact. This type of application is often referred to as a generic
server or daemon.

The following servers or daemons shipped by z/OS CS are generic:
« FTPD

* z/OS UNIX RSHD

» z/OS UNIX REXECD

* z/OS UNIX TELNETD

» z/OS UNIX SENDMAIL

» z/OS UNIX POPPER

« TFTPD

« TIMED

» z/OS UNIX Portmap

z/OS UNIX RSHD, REXECD and TELNETD are usually started by the INETD
daemon, which is shipped as part of the zZOS UNIX. Because INETD is also a
generic daemon, any server processes started by INETD inherently become generic
servers as well.

If a server started by INETD (a generic server) requires affinity to a specific stack,
this affinity can be accomplished by use of the _BPXK_SETIBMOPT_TRANSPORT
environment variable. For more information about the
_BPXK_SETIBMOPT_TRANSPORT environment variable refer to
[System Services Planning

The _BPXK_SETIBMOPT_TRANSPORT environment variable, when set, has an
effect similar to the setibmopt() function call provided by the C/C++ compiler and
described in the|z/OS C/C++ Run-Time Library Reference This variable can be set
in the JCL for a started procedure or batch job that executes a z/OS UNIX C/C++
program to indicate which TCP/IP stack instance the application should bind to.
TCP/IP applications that require affinity to a specific TCP/IP stack, like OSNMPD
and OROUTED, use the setibmopt() function call directly. The
_BPXK_SETIBMOPT_TRANSPORT environment variable basically provides the
ability to bind a generic server type of application to a specific stack.

For example, if you had two TCP/IP stacks configured under CINET, one named
TCPIP and the other TCPIPOE, and you wanted to start an FTPD server instance
that was associated with TCPIPOE, you could modify the FTPD procedure as
follows:

//FTPD ~ PROC MODULE='FTPD',PARMS="'TRACE'
//FTPD EXEC PGM=&MODULE,REGION=7M,TIME=NOLIMIT,

// PARM=('POSIX(ON) ALL31(ON)',
// "ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE")',
// '/&PARMS ')

//CEEDUMP DD SYSOUT=+
//SYSFTSX DD DISP=SHR,DSN=TCPV34.STANDARD.TCPXLBIN

58 z/0S V1R4.0 CS: IP Configuration Guide

All the parameters specified prior to the slash (/) in the parameter statement are
processed by the C/C++ run time library. Parameters to be passed to the FTPD
program must appear after the slash (/). Also note how the parameters were split
over three lines in this example because they could not fit on a single line.

The following example uses JCL for the started procedure for INETD:
//INETD PROC

//**

//INETD EXEC PGM=BPXBATCH,

//* PARM='PGM /usr/sbin/inetd -d /etc/inetd.conf'
// PARM='PGM /usr/sbin/inetd //'"USER1.INETD.CONF"'"'
/1*

//STDERR DD PATH='/tmp/inetd.debug.stderr',

// PATHOPTS=(OWRONLY,OCREAT,0TRUNC),

// PATHMODE=SIRWXU

//STDOUT DD PATH='/tmp/inetd.debug.stdout',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//STDENV DD DISP=SHR,DSN=USER1.INETD.ENVIRON

The STDENYV data set would contain the _BPX_SETIBMOPT_TRANSPORT
variable as follows:

_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE

In the previous examples, INETD was also passed its configuration file as a
parameter. In our examples, this file is an MVS data set rather than an HFS file;
therefore, it requires the additional double slash (/) and quotes that the example
shows.

Multiple instances of INETD are not allowed, even if each instance is bound to a
different TCP/IP stack. This is an INETD restriction, not a TCP/IP restriction.
Therefore, if you decide to make INETD have affinity to a specific stack, then that is
the only INETD instance that you will be able to have running in that MVS image.

Notes:

1. The _BPXK_SETIBMOPT_TRANSPORT variable should be specified only for a
generic server type of application.

If specified for a non-generic server and/or non-z/OS UNIX application it will not
have any effect.

2. The name specified for _.BPXK_SETIBMOPT_TRANSPORT must match the job
name associated with the TCP/IP stack.

If the name specified does not match the job name of any TCP/IP stacks
defined for CINET, the application will receive a z/OS UNIX return code of
X'3F3 and a return value of X’005A’ and may be accompanied by the following
message:

EDC8011I A name of a PFS was specified that either is
not configured or is not a Sockets PFS.

If the name specified does not match the job name of any currently active
TCP/IP stack defined under CINET, the application will receive a z/OS UNIX
return code of X’70" and a return value of X’'0296’ and may be accompanied by
the following message:

EDC51121 Resource temporarily unavailable.

3. For more detailed information about requesting transport affinity, refer to
[UNIX System Services Planning,

Chapter 1. Configuration overview 59

Port reservation across multiple transport providers

When there are multiple transport providers, be sure to synchronize the PORT
statements in each of the PROFILE.TCPIP files to ensure that the port reservations
for each stack match the port definitions for the servers that will be using that stack.

For more information about reserving ports with the PORT statement, see
[Chapter 3, “Customization” on page 101}

Ephemeral ports: When running with multiple transport providers, just as it is
necessary to synchronize PORT reservations for specific applications across all
stacks, it is required to synchronize reservations for port numbers that will be
dynamically assigned across all stacks. These are the ephemeral ports above 1023,
which are assigned by the stack when none is specified on the application bind().
To reserve a group of ports in the PROFILE.TCPIP, use PORTRANGE. For more
information about PORTRANGE, see |Chapter 3, “Customization” on page 101|
Specify the same PORTRANGE for every stack. In addition, you need to let the
z/OS UNIX CINET know which ports are guaranteed to be available on every stack.
The following is an example of reserving ports 4000 to 4999 in the two required
files:

* PROFILE.TCPIP
— PORTRANGE 4000 1000 TCP OMVS ; Reserved for OMVS
— PORTRANGE 4000 1000 UDP OMVS ; Reserved for OMVS
* BPXPRMxx parmlib member
— NETWORK DOMAINNAME(AF_INET)
— INADDRANYPORT(4000)
— INADDRANYCOUNT(1000)

Note: When IPv6 is configured and there are two NETWORK statements,
INADDRANYPORT and INADDRANYCOUNT only need to be specified for
the NETWORK statement for AF_INET and not for AF_INET®. If they are
specified for AF_INET®6, they are ignored and the values from the
NETWORK statement for AF_INET are used if provided. Otherwise, the
default values are used.

Selecting a stack when running multiple instances of TCP/IP

Socket application programs in a multi-stack (CINET) environment must contend
with the following:

* How the socket program selects which TCP/IP stack to use for its socket
communication

» How the TCP/IP resolver code executing in the socket application address space
decides which TCP/IP resolver configuration data sets to allocate

Note: If a resolver GLOBALTCPIPDATA setup file is used, a local TCPIP.DATA
cannot override any explicit statements in the global file and cannot
override any resolver statements. Therefore, in a CINET environment, the
TCPIPJOBNAME statement should not be specified in the
GLOBALTCPIPDATA file. Also, using the GLOBALTCPIPDATA file with
CINET requires that the resolver TCPIP.DATA statements are able to be
used by all stacks. For example, the IP addresses specified by the
NameServer statement must be accessible from all stacks. If they are not,
then the GLOBALTCPIPDATA file should not be used and you should
continue with multiple TCPIP.DATA data sets. For details, see
[“‘Understanding resolvers” on page 12|

60 z/0S V1R4.0 CS: IP Configuration Guide

To answer these questions, a distinction must be made between standard servers
and clients (those that come with the z/OS CS product), and other socket
application programs, including those you might have written yourself.

Standard servers and clients

The anchor configuration data set is the TCPIP.DATA data set. This is the base
resolver configuration data set with information on host name, domain origin, and so
on. It holds the TCPIPJOBNAME statement, which identifies the TCP/IP stack to
use, and the DATASETPREFIX statement, which is used by the resolver code and
other services when allocating configuration data sets. For more information on
these data sets, see |“Configuration files for TCP/IP applications” on page 26l

The key to selecting both a specific stack and resolver configuration data sets is to
control which TCPIP.DATA data set a standard server or client address space
allocates. Applications that use the z/OS UNIX API can use Common INET to
determine which stack an application will use. But, it is important to ensure that the
search order and the contents of the resolver configuration data set are understood.

Native MVS servers and clients search for TCPIP.DATA in sequences as described
in ['Search orders used in the native MVS environment” on page 33

z/OS UNIX servers and clients will search for TCPIP.DATA in sequences as
described in[‘Search orders used in the zZOS UNIX environment” on page 28|

Nonstandard servers and clients

Nonstandard servers and clients (those that do not come with the z/OS CS product)
also use TCPIP.DATA to decide which resolver configuration data sets to allocate.
Depending on the socket APl used, they might or might not use the
TCPIPJOBNAME parameter to select a stack.

If you run sockets programs from other products or vendors, you may want to know
which sockets APl was used to develop the program, and which techniques, if any,
the program uses to specify the name of the TCP/IP system address space. As long
as application programs that use a TCP/IP socket library do not specify anything
specific on calls setibmopt (), Initialize, or INITAPI, the TCPIPJOBNAME from a
TCPIP.DATA data set will be used for finding a TCP/IP system address space
name.

depicts the differences that prevail in stack selection depending on the
TCP/IP socket API under which you are running the socket program.

Table 8. How your own socket programs select a stack

C sockets Callable and Macro |Pascal sockets REXX sockets

SETIBMOPT or TCPNAME on TCPIPUOBNAME Service on Initialize

TCPIPJOBNAME from |INITAPI or from TCPIP.DATA or TCPIPJOBNAME

TCPIP.DATA TCPIPJOBNAME from TCPIP.DATA
from TCPIP.DATA

Callable and Macro programs might have a configuration option to specify the TCP/IP
system address space name, or might interrogate the available stacks via the getibmopt()
call.

A Callable or Macro program does not have to call INITAPI. If INITAPI is not called,
an implicit INITAPI is performed with the value taken from TCPIPJOBNAME in a

Chapter 1. Configuration overview 61

TCPIP.DATA data set. If INITAPI is called with the TCPNAME parameter specified
as a space, the TCP/IP system address space name results in the
TCPIPJOBNAME keyword value.

In a z/OS UNIX INET (single stack) environment, the socket application program is
always associated with the single TCP/IP stack. In the z/OS UNIX Common INET
(CINET) environment, your application will be associated with multiple TCP/IP
stacks unless the application specifically associates with a particular stack using the
z/OS UNIX socket call setibmopt(). For other ways of requesting stack affinity in a
CINET environment, refer to[z/0S UNIX System Services Planning

TCP/IP TSO clients

TSO client functions can be directed against any of a number of TCP/IP stacks.
Obviously, the client function must be able to find the TCPIP.DATA appropriate to
the stack of interest at any one time. Some TSO client commands provide a
parameter to specify the stack to be used. For those that do not, the following
methods are available for finding the relevant TCPIP.DATA:

* Add a SYSTCPD DD statement to your TSO logon procedure. The issue with this
approach is that a separate TSO logon procedure per stack is required, and
users have to log off TSO and log on again using another TSO logon procedure
in order to switch from one stack to another.

* Use one common TSO logon procedure without a SYSTCPD DD statement.
Before a TSO user starts any TCP/IP client programs, the user has to issue a
TSO ALLOC command wherein the user allocates a TCPIP.DATA data set to DD
name SYSTCPD. To switch from one stack to another, the user simply has to
deallocate the current SYSTCPD allocation (for example, TSO FREE command)
and allocate another TCPIP.DATA data set.

» Combine the first and second methods. Use one logon procedure to specify a
SYSTCPD DD for a default stack. To switch stacks, issue TSO ALLOC to allocate
a new SYSTCPD. To switch back, issue TSO ALLOC again with the name that
was on the SYSTCPD DD in the logon procedure. The disadvantage to this
approach is that the name that was on the SYSTCPD DD is hidden in the logon
procedure and needs to be retrieved or remembered.

The last method can be implemented by creating a small REXX program for every
TCP/IP stack on your MVS system. For each stack create a REXX program with
the name of the stack (for example, T18A or T18B). Whenever TSO users want to
use the T18A stack, they run the T18A REXX program. Any TCP/IP functions
invoked thereafter will use the T18A stack for socket communication. If users want
to switch to the T18B stack, they run the T18B REXX program. See

page 63|for an example.

62 z/OS V1R4.0 CS: IP Configuration Guide

/ REXX "T18B" */
" - - .

/* */
/* Switch TSO Address Space to use the T18B Stack. */
/* Subsequent NETSTAT command will be directed toward */
/* the T18BTCP stack. */
/ */
/ i ooy itk =/

Say 'Switching to T18BTCP stack’

msgstat = msg()

z = msg("OFF")

"FREE FI(SYSTCPD)"

"ALLOC FI(SYSTCPD) DA(TCPIP.T18B.TCPPARMS(TCPDATA)’) SHR"
z = msg(msgstat)

exit(0)

Figure 6. REXX program to switch TSO user to another TCP/IP stack

Selecting configuration data sets

The resolver code and other services that execute as part of the socket program
address space to service calls such as gethostbyname(), getservbyname() and
getprotobyname() allocate one or more resolver configuration files to service these
calls. All socket programs, including standard servers and clients and homegrown
socket programs, need access to resolver configuration files. For information on
how the resolver configuration files are found and used, see [‘Configuration files for
[TCP/IP applications” on page 26|

Sharing resolver configuration data sets
The general recommendation is to use separate DATASETPREFIX values for each

stack and create separate copies of the required configuration data sets; at the very
least, create separate copies of the resolver configuration data sets. For a test and
a production stack, however, you would probably use different DATASETPREFIX
values. However, if the stacks are functionally identical, you may share the same
DATASETPREFIX values and many of the same configuration data sets. You need
separate TCPIP.DATA data sets because of the two different TCPIPJOBNAMEs. On
the other hand, you may choose to share the resolver configuration data sets
between the stacks by using the same DATASETPREFIX value in each
TCPIP.DATA data set.

In addition to separate TCPIP.DATA data sets, separate /etc/resolv.conf files might
also be necessary. If this is the case, use the environment variable
RESOLVER_CONFIG to point to the appropriate resolver information.

Exercise caution if servers use DATASETPREFIX to allocate server-specific
configuration data sets. Try to use explicit allocation as far as possible in your
server JCL procedures. Most servers allow you to explicitly allocate their
configuration data sets using DD statements.

Some servers may use DATASETPREFIX to create new data sets. Servers that do
create new data sets allow you to specify an alternate data set prefix for the data
sets that are created. NPF creates new sequential data sets with captured print
data. NPF has a special keyword in NPF.DATA for this purpose; it is called

Chapter 1. Configuration overview 63

NPFPRINTPREFIX. If this keyword is specified, NPF will use that as the high-level
qualifier for newly created print data sets instead of taking the DATASETPREFIX
value from TCPIP.DATA. Another example of a server that creates new data sets is
the SMTP server.

Specifying BPXPRMxx values for a CINET configuration

For a detailed description of parameters in SYS1.PARMLIB(BPXPRMxx), refer to

2/0S UNIX System Services Planning and [z/0S MVS Initialization and Tuning|

Guidg.

/* AF_INET file system for sockets */
/* CINET support - BPXTCINT */

FILESYSTYPE TYPE(CINET)
ENTRYPOINT (BPXTCINT) [
NETWORK DOMAINNAME (AF_INET)
DOMATNNUMBER (2)
MAXSOCKETS (10000) H TYPE(CINET)
INADDRANYPORT (10000)
INADDRANYCOUNT (2000)
NETWORK DOMAINNAME (AF_INET6) Y
DOMAINNUMBER (19)
MAXSOCKETS (10000) H TYPE(CINET)
SUBFILESYSTYPE NAME(TCPIP1A) H
TYPE(CINET)
ENTRYPOINT (EZBPFINI) A
DEFAULT
SUBFILESYSTYPE NAME(TCPIP1B) H
TYPE(CINET)
ENTRYPOINT (EZBPFINI)

Figure 7. SYS1.PARMLIB(BPXPRMxx) for CINET

CINET and BPXTCINT specify the use of CINET.

H The MAXSOCKETS operand specifies the maximum number of sockets that
can be obtained for the given file system type. It should be large enough for the
number of sockets needed for applications using z/OS CS. MAXSOCKETS is
enforced independently for AF_INET (IPv4 sockets) and AF_INET6 (IPv6 sockets).

E]l INADDRANYPORT and INADDRANYCOUNT specify the first ephemeral port
number and the range of ports for zZOS UNIX. These values have to match the
PORTRANGE definitions in your PROFILE data sets for both TCP/IP stacks.
INADDRANYPORT and INADDRANYCOUNT should not be specified in the
NETWORK statement for AF_INETS6. If these parameters are specifed in the
NETWORK statement for AF_INETS6, they are ignored. The INADDRANYPORT and
INADDRANYCOUNT values for AF_INET6 are set to the same values specifed for
AF_INET.

[This additional NETWORK statement is required if you want a TCP/IP stack to
also support IPv6. Omit this statement if you do not want the stack to support IPv6
(that is, the stack will support IPv4 only).

B A transport provider stack for CINET is specified with a SUBFILESYSTYPE
statement. The NAME field must match the address space name for the TCP/IP

64 z/0S V1R4.0 CS: IP Configuration Guide

started task as well as the TCPIPJOBNAME parameter in TCPIP.DATA. In our
example, the name of the first stack is TCPIP1A and the name of the second stack
is TCPIP1B.

[@ EZBPFINI identifies a zZOS CS TCP/IP stack. For a z/OS CS TCP/IP stack, this
is the only valid value.

Keyword DEFAULT specifies which transport provider stack is to be used as the
default stack for z/OS UNIX. If DEFAULT is not specified, the first active stack will
be used as the default stack. The sequence of SUBFILESYSTYPE statements is
arbitrary if one stack is identified with the keyword DEFAULT. TCPIP1A is the
default stack in [Figure 7 on page 64}

Considerations for Enterprise Extender

The Enterprise Extender (EE) network connection is a simple set of extensions to
the existing open high-performance routing (HPR) technology. It performs an
efficient integration of the HPR frames using UDP/IP packets. To the HPR network,
the IP backbone is a logical link. To the IP network, the SNA traffic is UDP
datagrams that are routed without any hardware or software changes to the IP
backbone. Unlike gateways, there is no protocol transformation and unlike common
tunneling mechanisms, the integration is performed at the routing layers without the
overhead of additional transport functions. The advanced technology enables
efficient use of the intranet infrastructure for support of IP-based client accessing
SNA-based data (for example, TN3270 emulators or Web browsers using services
such as IBM’s Host On-Demand) as well as SNA clients using any of the SNA LU
types.

Enterprise Extender seamlessly routes packets through the network protocol edges,
eliminating the need to perform costly protocol translation and the store-and-forward
associated with transport-layer functions. Unlike Data Link Switching (DLSw), for
example, there are no TCP retransmit buffers and timers and no congestion control
logic in the router because it uses connectionless UDP and the congestion control
is provided end system to end system. Because of these savings, the edge routers
have less work to do and can perform the job they do best, which is forwarding
packets instead of incurring protocol translation overhead and maintaining many
TCP connections. Data center routers can handle larger networks and larger
volumes of network traffic, thus providing more capacity. For more information, refer
to the EE information in Migrating Subarea Networks to an IP Infrastructure,
SG24-5957-00 (an IBM Redbook) or the following Web site:

[http://www-4.ibm.com/software/network/commserver/Tibrary/whitepapers/csos390.htmi|

Considerations for VIPA

The Internet Protocol (IP) is a connectionless protocol. IP packets are routed from
the originator through a network of routers to the destination. All physical adapter
devices in such a network, including those for client and server hosts, are identified
by an IP Address which is unique within the network. The important point about IP
is that a failure of an intermediate router node or adapter will not prevent a packet
from moving from source to destination, as long as there is an alternate path
through the network.

TCP sets up a connection between two endpoints, identified by the respective IP
addresses and a port number on each. Unlike failures of an adapter in an
intermediate node, if one of the endpoint adapters (or the link leading to it) fails, all
connections through that adapter fail and must be reestablished. If the failure is on

Chapter 1. Configuration overview 65

http://www-4.ibm.com/software/network/commserver/library/whitepapers/csos390.html

a client workstation host, only the relatively few client connections are disrupted and
usually only one person is inconvenienced. However, an adapter failure on a server
means that hundreds or thousands of connections may be disrupted. On an S/390
or zSeries™ server with large capacity, the number may run to tens of thousands.

A Virtual IP Address, or VIPA in TCP/IP for z/OS , alleviates this situation. A VIPA is
configured in the same way as a normal IP address for a physical adapter, except
that it is not associated with any particular device. To an attached router, the TCP
on z/OS simply looks like another router. When the TCP receives a packet destined
for one of its VIPAs, the inbound IP function of the stack notes that the IP address
of the packet is in the stack’s Home list and passes the packet up the stack.
Assuming the stack has multiple adapters or paths to it (including XCF from other
TCP stacks in a sysplex), if a particular physical adapter fails, the attached routing
network will simply route VIPA-targeted packets to the stack via an alternate route.

While this removes hardware and associated transmission media as a single point
of failure for large numbers of connections, the connectivity of a server can still be
lost through a failure of a single stack or an MVS image. The VIPA can be
configured on another stack with a manual process, but this requires the presence
of an operator or programmed automation.

Dynamic VIPA Takeover enables Dynamic VIPAs to be moved without human
intervention or programmed automation to allow new connections to a server at the
same IP address as soon as possible. This can reduce downtime significantly. With
Dynamic VIPA Takeover you can configure one or more TCP/IP stacks to be
backups (VIPABACKUP statement) for a particular Dynamic VIPA. If the stack or
MVS image where the Dynamic VIPA is active is terminated, one of the backup
stacks automatically activates that Dynamic VIPA. The existing connections will be
terminated but can be quickly reestablished on the stack that is taking over.

Notes:

1. Because a VIPA is associated with a zZOS TCP/IP stack and is not associated
with a specific physical network attachment, it can be moved to a stack on any
image in the sysplex, or even to a z/OS TCP/IP stack not in the sysplex as long
as the address fits into the installation’s network configuration.

2. If using VIPA along with an intelligent bridge or switch, ensure that 'Port fast
mode’ (Cisco) is enabled. This helps to decrease the amount of time the VIPA is
unreachable in scenarios where there is dynamic movement of VIPA (dynamic
or static). For more information, see your bridge or switch manual.

You may also associate a particular Dynamic VIPA address with an application
using the IOCTL SIOCSVIPA command or by BINDing explicitly to the Dynamic
VIPA address. If the Dynamic VIPA address is within the VIPARANGE profile
statement, then this Dynamic VIPA address will be created dynamically. This type of
configuration enables a Dynamic VIPA to become an address of an application in a
sysplex.

With Sysplex Distributor you can spread connection requests destined for Dynamic
VIPAs to other stacks in the sysplex. You can use the VIPADISTRIBUTE profile
statement to designate up to 32 stacks where connections for a particular DVIPA
and up to 4 ports can be distributed, including the stack where the DVIPA is
defined. The distributing stack (the stack where the VIPADISTRIBUTE statement
was coded) might use either WLM or a combination of WLM and Quality of Service
(QoS) performance information to determine where to forward new connection

66 z/0S V1R4.0 CS: IP Configuration Guide

requests. If the distributing stack/MVS image fails, connections forwarded to target
stacks can be preserved by having the Dynamic VIPA address backed up on
another stack.

Similarly, a stack can immediately take back a Dynamic VIPA address from another
stack. If the original stack VIPADEFINEd the address with the keyword MOVEABLE
IMMEDIATE (the default), then the Dynamic VIPA is moved as soon as the second
stack requests ownership. The second stack assumes responsibility for forwarding
packets for existing connections to the appropriate stack. If MOVEABLE
WHENIDLE was specified, ownership does not pass until all existing connections
on the current stack are closed.

For detailed information about VIPA, see |Chapter 5, “Virtual IP Addressing” on|

Required steps before starting TCP/IP

The following sections describe the steps you must complete before starting TCP/IP.

Planning your installation and migration

It will be to your advantage to have studied thoroughly the following documentation
prior to the installation and customization of zZOS Communications Server:

» Program Directory for z/OS for CBPDO Installation and ServerPac Reference,
Program Number 5694-A01

Preventive Service Planning (PSP) bucket
[z20S Communications Server: IP Migratior}
[z70S UNIX System Services Planning|

OS390CKL, an IBM MKTTOOLS document for the z/OS UNIX System Services
implementer

It is also recommended that you attend a z/OS UNIX System Services concepts
class and a class in using z/OS UNIX System Services prior to migrating to z/OS
Communications Server. If this is not possible, then you will want to ensure that the
z/OS UNIX System Services implementer and the RACF administrator work
together with you during the installation and customization process.

Planning for and installing zZOS Communications Server requires MVS, UNIX, and
networking skill. If your background is in traditional MVS programming or systems
programming, the z/OS UNIX System Services terminology might at first seem to be
somewhat confusing. If your background is in the UNIX environment, the terms
should be familiar to you.

In the past, MVS TCP/IP system programmers have needed a working knowledge
of the MVS or z/OS system. These programmers have been accustomed to working
closely with the RACF administrator and z/OS system programmer for
authorizations; the VTAM and NCP system programmers for SNALINK and NCP
connections; the IP address administrator for basic name and address assignments;
and the administrators of the router network and channel-attached peripherals for
connection definition and problem determination.

With the introduction of zZOS Communications Server, the TCP/IP system
programmer needs to develop an additional alliance with the z/OS UNIX System
Services system programmer. The TSO interfaces that have been traditionally
available in the host-based TCP/IP still stand at the system programmer’s disposal

Chapter 1. Configuration overview 67

and additional MVS console commands simplify some TCP/IP operations. However,
another user interface provided by the UNIX shell environment, either with the
OMVS shell or the ISPF SHELL, is a useful and sometimes necessary tool that the
TCP/IP system programmer will need to work with. Additionally, the tight coupling of
z/OS Communications Server with z/OS UNIX System Services means that the
TCP/IP system programmer needs more than a passing knowledge of UNIX
conventions, commands, and Hierarchical File System (HFS) concepts. Even if the
system programmer is familiar with other UNIX environments, work with the UNIX
shell requires more than basic familiarity.

In the first version of a full TCP/IP stack based on native MVS and on z/OS UNIX
System Services, few have all the requisite skills to successfully implement z/OS
Communications Server on their own. As more and more systems programmers
acquire skills in UNIX System Services and in TCP/IP, this will become less and
less the case. Working with the z/OS UNIX System Services implementer when
implementing z/OS Communications Server provides the most effective solution to
establishing a working zZOS Communications Server environment.

Additional assistance is available to the zZOS UNIX System Services implementor at
the z/OS wizards website, |http:// www.ibm.com/eserver/zseries/zos/wizards/
Wizards are interactive assistants that simplify tasks such as installation planning,
as well as configuration and customization.

If you are migrating to zZOS Communications Server, establish a migration process
to move all your existing applications, and after this, consider the use of new and
enhanced functions based on [zZ0S Communications Server: IP Migration, z/OS
Communications Server allows multiple copies of the TCP/IP protocol stack to
execute on the same MVS image. However, with all the performance enhancements
introduced in ZZOS Communications Server, it is probably not necessary to
implement a multi-stack system for production purposes unless one is considering
building a system programming test stack.

You are now ready to move on to the following steps.

Step 1: Install z/OS CS

Before you begin the installation:

« Read|z/OS and z/OS.e Planning for Installatior] to help you plan the installation
and migration of z/OS CS.

* Be sure you understand the data set naming conventions used in TCP/IP. You
can find this information in [‘Configuration data set naming conventions” on|
page 19

« Consult the [zZ0S Program Directory| (Customization considerations for Wave 1D)

for current information about the material, procedures, and storage estimates of
the MVS image.

Install z/OS CS with other elements of z/OS. If you use the ServerPac method of
installation, see z/OS Installing Your Order, if you use the CBPDO method of
installation, refer to |z/OS Program Directory{. When appropriate, those two
documents will direct you back to this document to customize the TCP/IP data sets
and procedures and verify their configuration.

Verifying the initial installation

Both the [z/0S Program Directoryland z/0S Installing Your Order contain
step-by-step instructions that can be used to set up and verify a basic TCP/IP

68 z/0S V1R4.0 CS: IP Configuration Guide

http:// www.ibm.com/eserver/zseries/zos/wizards/

configuration with only the loopback address and a few key servers. For more
information regarding these instructions, refer to the information about Wave 1D
customizations in the [zZOS Program Directory| or the information about verifying
your installation in z/OS Installing Your Order.

Step 2: Customize z/OS CS

To customize TCP/IP you need to update the cataloged procedures and
configuration data sets for the TCP/IP address space, its clients, and servers.

z/OS CS runs as a started task in its own address space. Each of the servers runs
in its own address space and is started with its own procedure. The TCP/IP address
space requires:

» A procedure in a system or recognized PROCLIB.

» A data set that provides configuration definitions for the TCP/IP address space
and includes statements affecting many of the servers. This data set is referred
to as PROFILE.TCPIP.

* A data set to provide the parameters that are common across all clients. This
data set is referred to as TCPIP.DATA.

Many of the servers also require other data sets for their specific functions.

Making SYS1.PARMLIB changes
You need to make certain changes to SYS1.PARMLIB. These changes depend on
which of the following installation methods you use:

ServerPac method
After the file system is restored (through the RESTFS job), you will see that
ServerPac has changed some of the PARMLIB members. Follow the
instructions to change the BPXPRMxx member of PARMLIB.

CBPDO method
Change the PARMLIB members according to the instructions listed in the
chapters that describe installation instructions for Wave 1. Tables describing
changes to PARMLIB and changes to BPXPRMxx member are included.

Note:

z/OS CS exploits z/0OS UNIX services even for traditional MVS environments
and applications. Prior to utilizing TCP/IP services, therefore, a full-function
mode z/OS UNIX environment—including a Data Facility Storage
Management Subsystem (DFSMSdfp™), a Hierarchical File System (HFS),
and a security product (such as Resource Access Control Facility
(RACF))—needs to be defined and active before z/OS CS can be started
successfully.

Additional information about required TCP/IP definitions for the UNIX environment
can be found in [‘Defining TCP/IP as a UNIX System Services physical file system|
|(PFS)” on page 50/ and[*UNIX System Services security considerations” on page 45I

Common z/0S UNIX configuration problems: Following are some explanations
and possible solutions for common problems that you may encounter when
configuring the z/OS UNIX environment.

» TCP/IP initialization fails with the following messages:

EZZ42031 OPENEDITION-TCP/IP CONNECTION ERROR FOR TCPIP-BPX1SOC,
00000003, FFFFFFFF,00000070,112B00B6

Chapter 1. Configuration overview 69

These messages usually indicate that both INET and CINET FILESYSTYPE have
been specified. Only one should be specified; refer to the FILESYSTYPE section
in|z/0S UNIX System Services Planning|for additional information.

» TCP/IP initialization fails with the following messages:

EZZ42031 OPENEDITION-TCP/IP CONNECTION ERROR FOR TCPIP-BPX1SOC,
00000003, FFFFFFFF,0000006F,112B00BO

These messages indicate that the requester of the service is not privileged. The
service requested requires a privileged user. Check the documentation for the
service to understand what privilege is required.

« TCP/IP initialization fails with the following messages:

EZZ42031 OPENEDITION-TCP/IP CONNECTION ERROR
FOR TCPIPA-BPX1I0C,8008C981,FFFFFFFF,0000009E,12B2005A

EZ742041 TCPIP INITIALIZATION FOR TCPIPA FAILED

These messages usually indicate that an incorrect jobname was specified in the
SUBFILESYSTYPE NAME() definition in the BPXPRMxx member for a common
INET environment. In this scenario, the NAME() must match TCPIPA.

* TCP/IP initialization fails with the following messages:

IEA8481 DUMP SUPPRESSED - ABDUMP MAY NOT DUMP STORAG FOR KEY 0-7 JOB TCPV34A
IEF4501 TCPIPA TCPIPA - ABEND=SEC6 U0OO0O REASON=0F01C008

These messages are usually an indicator that an OMVS RACF segment has not
been defined for the user ID associated with the TCP/IP started procedure.
Define an OMVS segment with a UID of 0 for the user ID associated with the
TCP/IP started procedure.

« TCP/IP initialization fails with the following messages:

IEF4031 TCPIPA - STARTED - TIME=16.01.25

EZZ42031 OPENEDITION-TCP/IP CONNECTION ERROR FOR TCPIPA-BPX110C,
8008139A,FFFFFFFF,00000079,12D2025E

EZ742041 TCPIP INITIALIZATION FOR TCPIPA FAILED.

==> The 0079 value is EINVAL - The parameter is incorrect
==> The 025E value is JRSocketCallParmError - A socket syscall
contains incorrect parameters

These messages usually indicate that an incorrect entry point name has been
specified in the SUBFILESYSTYPE ENTRYPOINT() definition. The correct value
is ENTRYPOINT(EZBPFINI).

» TCP/IP initialization fails with the following messages:

EZZ32031 OPENEDITION-TCP/IP CONNECTION ERROR FOR TCPIPA-BPX1SOC,
00000003, FFFFFFFF,0000045A,112B0000
EZZ42041 TCPIP INITIALIZATION FOR TCPIPA FAILED.

==> The 045A value is EAFNOSUPPORT - The address family is not supported

These messages indicate that AF_INET was not defined or did not initialize
properly. Check for any earlier zZOS UNIX messages and verify that the z/OS
UNIX NETWORK DOMAINNAME(AF_INET) statement is in your BPXPRMxx
member.

» After issuing a NETSTAT command from TSO, the following message is
displayed:
netstat
CEE5101C During initialization, the z/0S UNIX callable service

BPX1IMSS failed. The system return code was 0000000156,
the reason code was 0507014D. The application will be

70 z/OS V1R4.0 CS: IP Configuration Guide

terminated.
NETSTAT ENDED DUE TO ERROR+
READY
?
USER ABEND CODE 4093 REASON CODE 00000090
READY

> The 0156 value is EMVSINITIAL - Process initialization error
> The 014D value is JRFsFailChdir - The dub failed, due to
an error with the initial home directory

These messages indicate that the user ID issuing the NETSTAT command does
not have an OMVS RACF segment defined for it. Define an OMVS segment for
this user ID or activate the default OMVS segment support. For details, see
|“UNIX System Services security considerations” on page 45|.

» Socket applications using the z/OS CS TCP/IP Services APlIs fail with an ERRNO
of 156.

ERRNO 156 indicates a z/OS UNIX process initialization failure. This is usually
an indication that a proper OMVS RACF segment is not defined for the user ID
associated with the application. The RACF OMVS segment may not be defined
or may contain errors such as an improper HOME() directory specification. If the
OMVS segment is not defined, you may also receive the following message:
ICH4081 USER(USER8) GROUP(SYS1) NAME(TSO USERID USER8)

CL(PROCESS)
OMVS SEGMENT NOT DEFINED

In this example, USERS is the user ID associated with the failing application. To
correct this problem, define a proper OMVS segment for the user ID associated
with the failing application. For details, see ['UNIX System Services security|
[considerations” on page 45|

Completion of these steps ensures that the applications and resources on the target
system will function correctly at the new level.

The subsequent chapters in this document show you how to:

» Configure the TCP/IP address space by updating the samples provided in
hlg.SEZAINST(SAMPPROF) and hlq.SEZAINST(TCPIPROC).

» Configure the universal client parameters provided in hig.SEZAINST(TCPDATA).

» Configure the site table, defined in hlg.HOSTS.LOCAL or hlg.ETC.IPNODES, to
identify the Internet names and addresses of your TCP/IP host.

* Customize the TCP/IP Component Trace parameters by updating the CTRACE
parameter in the PARM= field of the EXEC JCL statement in the TCP/IP started
procedure.

You can find a description of the MVS Component Trace support in the
[Communications Server: IP Diagnosis.

» Specify the ENVAR parameter on the PARM=keyword to override the resolver
file. For more information on setting the environment variable
RESOLVER_CONFIG using the ENVAR parameter, see [‘Considerations for|
|mu|tip|e instances of TCP/IP” on page 54

» Configure each of the servers you want to run. This might require:
— Modifying sample procedures and adding them in your PROCLIB
— Modifying the configuration data set, PROFILE.TCPIP

— Adding port numbers to hiq.ETC.SERVICES
— Modifying other data sets containing server-specific parameters

Chapter 1. Configuration overview 71

You can find the sample procedures and data sets in hlq.SEZAINST or the HFS.
[Table 2 on page 21| provides additional reference information you can use as you
configure and customize each server.

You can find general information about starting, stopping, and dynamically
controlling the servers in |z/0S Communications Server: IP System Administrator’s|

Step 3: Configure VMCF and TNF

The Pascal socket interface makes use of the IUCV/VMCF services for a limited set
of inter-address space communication flows. As a result, if you are using any
applications (provided by IBM or others) that use the Pascal socket API, you must
insure that the VMCF and TNF subsystems are active before the applications are
started. TCP/IP provides several applications and commands that exploit these
interfaces, such as the SMTP and LPD servers, and the TSO REXEC, RSH, and
remote printing commands; therefore, almost all installations will require setting up
VMCF and TNF.

The restartable VMCF must be started before TCP/IP if you want the VMCF node
name used as a default host name during TCP/IP initialization (in cases where no
other host name can be located).

Note: Host name is the value normally specified on the TCPIP.DATA HOSTNAME
statement.

Also note that the VMCF node name is used as a system name qualifier when
processing the TCPIP.DATA file and by the SMTP server as the NJE node name. It
is recommended that the MVS system name is used for the VMCF node name
specification and that the NJE node name is specified explicitly by using the
NJENODENAME statement in the SMTP configuration data set.

You can configure Virtual Machine Communication Facility (VMCF) and TNF in two
different ways: as restartable subsystems or as non-restartable subsystems.

Restartable subsystems

Configuring VMCF and TNF as restartable subsystems has the following

advantages:

» Error detection is provided when the subsystems do not seem to be initializing
properly.

* You can change the system name on the restart.

+ Commands are available to remove users from internal tables, display current
users and to terminate the subsystem.

In summary, a restartable VMCF and TNF configuration provides better availability
and is therefore recommended.

If you choose to use restartable VMCF and TNF, follow these steps:

1. Update your IEFSSNxx member in SYS1.PARMLIB with the TNF and VMCF
subsystem statements required by TCP/IP. The specification can be in either the
IBM recommended keyword parameter form or the positional parameter form of
IEFSSNxx. For example:

* The keyword parameter form is:

SUBSYS SUBNAME (TNF)
SUBSYS SUBNAME (VMCF)

72 z/0S V1R4.0 CS: IP Configuration Guide

* The positional parameter form is:
TNF
VMCF

2. Add procedure EZAZSSI to your system PROCLIB. A sample of this procedure
is located in the data set hlq.SEZAINST (where hlq is the high-level qualifier for
the TCP/IP product data sets in your installation).
//EZAZSST PROC P=8SYSNAME.
//STARTVT EXEC PGM=EZAZSSI,PARM=&P,TIME=1440

3. Start VMCF and TNF using the procedure EZAZSSI before starting TCP/IP. If
your nodename is the same as the MVS system symbolic &SYSNAME, then
you can start VMCF and TNF with the following command:

S EZAZSSI

If your nodename is different than the MVS system symbolic &SYSNAME, start
VMCF and TNF as follows:

S EZAZSSI,P=nodename
Replace nodename with the SYSTEM NAME of your MVS system.

Non-restartable subsystems
If you will not be using restartable VMCF and TNF, you should update your

IEFSSNxx member in SYS1.PARMLIB with the following subsystem statements
required by TCP/IP. The specification can be in either the IBM recommended
keyword parameter form or the positional parameter form of IEFSSNxx. For
example:

* The keyword parameter form is:

SUBSYS SUBNAME(TNF) INITRTN(MVPTSSI)
SUBSYS SUBNAME (VMCF) INITRTN(MVPXSSI) INITPARM(nodename)

* The positional parameter form is:

TNF,MVPTSSI
VMCF ,MVPXSSI,nodename

Do not use the sample SEZAINST (IEFSSN) as shipped, because the comments
are not valid in SYS1.PARMLIB. A modified form of the last two lines must be
placed in the IEFSSNxx PARMLIB member. Replace node name on the VMCF line
with the NJE node name of your MVS system.

VMCF commands
If you will be using restartable VMCEF, the following VMCF commands let you

display the names of the current users of VMCF and TNF, and if necessary, remove
names from the name lists.

Note: Removing names from the name lists and stopping either subsystem can
have unpredictable results, if done hastily. Use the REMOVE and stop (P)
commands carefully and only as a last resort.

If you remove a user, the application is not canceled, nor is the connection
severed. In other words, the removed application may remain active in the
system, and may subsequently abend 0D6/0D4/0C4, or cause TCP/IP to
hang. A user that is removed from VMCF may still be a user of TNF and
even TCP/IP, and vice versa.

To terminate users and stop VMCF or TNF properly, follow these steps:

Chapter 1. Configuration overview 73

1. Display the current users of the subsystems, using one of the following:
F VMCF,DISPLAY,NAME=%
F TNF,DISPLAY,NAME=%
2. Terminate those users. If termination fails, use the REMOVE command as a last
resort to force them from the name list.
3. Stop the subsystem, using one of the following commands:
P VMCF
P TNF

If the P command fails, use one of the following commands:
FORCE ARM VMCF
FORCE ARM TNF

Following are descriptions of the commands:

F TNF,DISPLAY,NAME=[name|*]
Displays the named user [or all (*) users] of TNF, sorted by ASID.

F TNF,REMOVE,NAME=[name | *]
Removes either the named user [or all (*) users] from the TNF internal
tables.

P TNF Requests TNF to terminate.

F VMCF,DISPLAY,NAME=[name | *]
Displays the named user [or all (*) users] of VMCF, sorted by name.

F VMCF,REMOVE,NAME=[name | *]
Removes either the named user [or all (*) users] from the VMCF internal
tables.

P VMCF
Requests VMCF to terminate

Following are sample commands:

F TNF,DISPLAY,NAME=TCPV3
F VMCF,DISPLAY,NAME=+

F TNF,REMOVE,NAME=FTPSERV
F VMCF,REMOVE,NAME=*

P TNF

Common VMCF problems
Following are some common VMCF problems:

¢ VMCF or TNF fail to initialize with an 0C4 abend.

This is probably an installation problem; check the PPT entries for errors. Some
levels of MVS do not flag PPT syntax errors properly.

* Abends 0D5 and 0D6 after REMOVEing a user.

This is probably because the application is still running and using VMCF. It is not
recommended that users be removed from VMCF or TNF without first terminating
the affected user.

* VMCF or TNF do not respond to commands.

This is probably because one or both of the non-restartable versions of VMCF or
TNF are still active. To get them to respond to commands, stop all VMCF/TNF
users, FORCE ARM VMCF and TNF, then use EZAZSSI to restart.

* VMCF or TNF cannot be stopped.

74 z/0S V1R4.0 CS: IP Configuration Guide

This is probably because users still exist in the VMCF and TNF lists. Use the F
VMCF,DISPLAY,NAME="* and F TNF,DISPLAY,NAME=* commands to identify
those users who are still active. Then either cancel those users or remove them
from the lists using the F VMCF,REMOVE and F TNFREMOVE commands.

IUCV/VMCF considerations

The IUCV/VMCEF inter-address space communication API enables applications
running in the same MVS image to communicate with each other without requiring
the services of the TCP/IP protocol stack. The VMCF/TNF subsystems provide
these services, which are still available in z/OS CS. Several components of TCP/IP
in z/OS CS continue to make some use of these services for the purpose of
inter-address space communications. These include:

» The AF_IUCV domain sockets for the TCP/IP C socket interface. The AF_IUCV
domain enables applications executing in the same z/OS image and using the
TCP/IP C socket interface to communicate with each other using a socket API,
but without requiring the services of the TCP/IP protocol stack, as no network
flows result in these communications. This is quite different from the more
common AF_INET domain that enables socket communication over a TCP/IP
network. AF_IUCV sockets continue to be supported in z/OS CS.

An example of a TCP/IP-provided application that exploits AF_IUCV sockets is
the SNMP Query Engine component (SQESERVE). The z/OS UNIX socket
library provides a similar functionality to the AF_IUCV domain sockets with its
AF_UNIX domain. Users creating new applications should consider using
AF_UNIX domain sockets.

* The Pascal socket interface also makes use of the IUCV/VMCF services for a
limited set of inter-address space communication flows. As a result, any
applications (provided by IBM or others) that use the Pascal socket API also still
have a requirement for the VMCF/TNF subsystems. TCP/IP provides several
applications and commands that exploit these interfaces, such as the SMTP and
LPD servers, and the TSO TELNET, HOMETEST, TESTSITE, RSH, REXEC, and
LPR commands.

Therefore, in z/OS CS you must continue to configure and start the VMCF and TNF
subsystems as you did in TCP/IP V3R2. However, because the VMCF/TNF
subsystems are no longer used to communicate directly with the TCP/IP protocol
stack in z/OS CS, the amount of CPU they will consume will be significantly lower
than in the TCP/IP V3R2 environment.

Step 4: Update the VTAM application definitions

You must update the VTAM definitions for TN3270 Telnet and any other of these
applications that you configure on your system. You can find example VTAM
definitions for each of these applications in their respective chapters.

» SNALINK

* SNALINK LU6.2

* TN3270 Telnet

* X.25 NPSI Server

hlg.SEZAINST(VTAMLST) contains a sample of the VTAM definitions for TN3270
Telnet applications. You should copy this member, update it, and add it to the
ATCCONXxx member of VTAMLST. This will ensure that the TN3270 Telnet
applications are activated when VTAM is started.

Because the TCP/IP LU code cannot handle multiple concurrent sessions, you must
code SESSLIM=YES for each TN3270 Telnet LU defined to VTAM. Otherwise, if

Chapter 1. Configuration overview 75

SESSLIM=NO, menu or session manager applications that use return session
processing might cause session termination.

Step 5: Verify that the resolver address space is active

The resolver address space must be started before the TCP/IP address space can
be started. For information on how the resolver can be started, see|‘Understanding

I
|
|
I lresolvers” on page 12} You can use the resolver's MODIFY DISPLAY command to
I
I
I

check that the resolver is active and what resolver setup statements are being
used. For the syntax and usage of the command, see Iz/OS Communications|
[Server: IP System Administrator's Commands

Step 6: Start the TCP/IP address space

Enter the MVS START command from the operator’s console to start TCP/IP,
specifying the member name of your cataloged procedure. This will start the TCP/IP
address space and any of the servers you have defined in the AUTOLOG statement
in PROFILE.TCPIP. For example, if the procedure to start the TCP/IP address
space was called TCP1 in your PROCLIB, you would enter:

START TCP1

I For information on updating the TCPIP cataloged procedure or configuration
I statements used to configure the TCPIP address space, refer to
I [Communications Server: IP Configuration Reference]

Step 7: Set up cataloged procedures and configuration data sets

At this point in the configuration process, you can choose to either set up
procedures or you can do each one individually when you set up the appropriate
application, function, or server.

See the remaining chapters in this document for more information about setting up
the appropriate application, function, or server.

Step 8: Customize TCP/IP messages

The messages for every TCP/IP server program are compiled and linked with the
program and reside in an internal message repository. Some of the server programs
that are written in the C language also have their messages in external data sets.
You can edit these external message data sets to translate the messages to
another language or customize them to suit your installation.

How to access the message data sets

The procedures for these servers have a special DD statement that point to the
external message data set. If you are going to override the internal messages and
use external customized messages, you need to remove the comment from the
appropriate DD statement and ensure it points to the correct data set.

The following table shows the servers that have external messages, the DD
statement used, and the name of the message data set delivered with the system:

Server DD statement Data set

NCPROUTE //IMESSAGE SEZAINST(EZBNRMSG)
SNMP Query Engine //MSSNMPMS SEZAINST(MSSNMP)
MISC Server //IMSMISCSR SEZAINST(MSMISCSR)

76 z/OS V1R4.0 CS: IP Configuration Guide

Message text

The message text might include special characters for the variable fields that are
converted when the message is printed or displayed and control characters that
affect the message format. The conversion characters start with a percent sign (%)
and the control characters start with a backslash (\). These are all standard
notations for the C language print function. The messages might also contain
comments which start with /* and end with */.

In the following simulated message, the control character \n forces a new line to
print and the string variables, represented by %s, are converted in the order they are
passed from the program.

29999 I Command %s received from user %s\n

Message format
The following diagram explains the syntax for TCP/IP message IDs on the host:

ppp nnnn t

Product Identifier
(3 characters, alphabetic)

Number
(4 numeric digits)

Type Code
(1 character, alphabetic)

Figure 8. Syntax for TCP/IP message IDs

The product identifiers (ppp) for TCP/IP are EZA, EZB, EZY, and EZZ. The
number (nnnn) indicates a unique 4-digit numeric value assigned to the message
by product. The type (t) indicates the severity assigned to the message.

Rules for customizing the messages
The general rule for customizing or translating messages is to only change the text
portion of the message.

* Do not change the MARGIN, PRODUCT, and COMPONENT definitions at the
top of the data set. These are required definitions for the program. For example,
these entries at the top of the MISC server message data set should not be
changed:

MARGINS(1,72)
PRODUCT EZA
COMPONENT MSC

* Do not change the message numbers and the severity code. These parts of the
message have specific meaning; if you change them the program may not work
correctly.

» Do not change the conversion characters. These indicate that the program is
passing data, the type of data it is passing, and the appropriate way to display or
print this data. For example, do not change or delete %s and %d in the following
message:

Chapter 1. Configuration overview 77

4858 W "Route from %s in unsupported address family %d\n"

* You can reorder the variables that are passed in the message. For example, you
can reverse the order of the two string variables that are passed when translating
a message by specifying the new order of the arguments in parentheses
following the message text:

Before: 299991 Command %s received from user %s\n
After: 299991 Utilisador %s envio instrucion %s\n (2, 1)

The result would be EZY9999I Utilisador MANNY envio instrucion FTP instead
of EZY9999I Command FTP received from user MANNY.

* Watch for any program parameters or keywords that might be in the message
text. In most cases, you should not translate them.

For example, in the following message, 'active' is a keyword used in the
gateway definition and should not be translated:

4851 E "First two elements must be 'active' for active gateway\n"

78 z/0S V1R4.0 CS: IP Configuration Guide

Chapter 2. Security

The z/0OS Communications Server, along with other elements of z/OS, provide
numerous enterprise-strength security services to protect your mission-critical data.
This chapter provides an overview of these technologies and how they can be used
for a safe and secure z/OS TCP/IP deployment.

RACF for
— User I&A
— Access Cil

I Mission-critical data
Secure Key Distribution

Secure protocols
(IPSec, SSL, SNA SLE)
with Strong 3DES Encryptio

Business 7 o g
partner " Enterprise Network i
or Intranet

N

Network 2/0S CS

IDS Y= DS
= =,

Remote Intranet

Access Host

Figure 9. Elements of a secure TCP/IP deployment

The Communications Server protects data and other resources on the system.
Communications Server applications use RACF services to ensure that users
requesting application access are identified and authenticated, and to protect data
and other system resources from unauthorized access. The Communications Server
safeguards the availability of the system by protecting against denial of service
attacks from the network.

The Communications Server protects data in the network by supporting a variety of
cryptographic-based network security protocols such as IPSec, SSL, and SNA
Session Level Encryption. These security protocols ensure that data received is
originated by the claimed sender (data origin authentication), that contents were
unchanged in transit (message integrity), and that sensitive data is concealed using
encryption (data privacy).

The Communications Server provides security event reporting to record potential
security violations. These services may help you identify potential sources of
subsequent attacks, respond more quickly to network attacks, and manage system
resources during periods of high network traffic for key applications.

Note: Some of the security features described in this chapter have not yet been
implemented for IPv6. To determine which functions are supported for IPv6,
see [Table 1 on page 3|

System resource protection

Application security

The Communications Server protects data and other system resources accessed by
applications included in the Communications Server element. This protection

© Copyright IBM Corp. 2000, 2002 79

requires verification of the identity of the end user requesting access. This process
is called identification and authentication. In addition, access to resources must be
limited to those users with permission. This process is called access control.
Communications Server applications use RACF for identification and authentication,
and access control decisions. Authenticated users are granted access to RACF
resources only for which they have permission

Some applications allow anonymous access. Applications that allow anonymous
access include anonymous FTP, Remote Execution, and Trivial File Transfer
Program (TFTP). The Communications Server ensures that all anonymous access
can be controlled by the installation. If anonymous access is allowed, the resources
accessed can be limited in several ways:

* The application can be configured to limit resources for which access will be
attempted.

» The application can be configured to use a RACF user ID to represent the
anonymous user. In this case, access is allowed for those resources specifically
permitted for the anonymous RACF user ID and for those resources that are
universally accessible.

Most Communications Server applications must be configured specifically to allow
anonymous access. One exception is TFTP. TFTP allows anonymous read access
only. TFTP can be configured to control those directories that contain files that can
be downloaded.

The following chart depicts a representative set of Communications Server
applications, whether end user identification is required, and the security credentials
under which resource access is made. For more information on specific application
considerations, refer to the individual chapters for each application.

Server End User Identification Resource Access
: End user ID or configured
FTP Optional (1) anonymous user ID (2)
’ Server ID or end
LPD Optional (1) user ID
TFTP No Server user ID (2)
MVS REXECD Required End user ID
Required (password Surrogate user ID or end
MVS RSHD optional) (1) user ID
UNIX REXECD Required End user ID
. End user ID or Server
UNIX RSHD Required (password user ID(exit routine to
optional) (1) verify request)
UNIX SHELL (telnet/rlogin) Required End user ID

Figure 10. User identification, authentication, and access control for zZ0OS Communications
Server applications

1) All optionals are installation controlled and can all be configured to require
full end user identification.

(2) Files accessible can be configured on a server basis to limit access.

80 z/0S V1R4.0 CS: IP Configuration Guide

TCP/IP resource protection

The Communications Server uses the System Authorization Facility (SAF) to protect
TCP/IP resources from unauthorized access. These resources are represented by
resource profiles defined in the SERVAUTH class. The use of SERVAUTH is
optional. The installation can choose to use any combination of the protections
provided by SERVAUTH.

In addition to the use of SERVAUTH protection, other functions provide further
resource protection such as Intrusion Detection Services (IDS), syslogd isolation
and IP filtering. These topics are discussed in more detail later in the chapter.

Local user access control to TCP/IP resources using the SAF
The SAF can control the ability of users executing on z/OS to access select TCP/IP

resources. These functions protect against unauthorized user access to:
* The TCP/IP stack

* TCP and UDP ports

* The IP network or specific hosts in an IP network

* Netstat command output

* Webserver page caching services in the TCP/IP stack

With this solution, the administrator defines the above TCP/IP resources as SAF
resources. The resource profiles are defined as part of the SERVAUTH class. The
Communications Server allows the local user access to these resources based on
the user or group permissions associated with the SAF resource.

Stack Access Control

Stack Access Control allows control of access to a TCP/IP stack using the SAF. It
provides a way to generally allow or disallow users or groups of users access to a
TCP/IP stack. The function controls the ability of a user to open an AF_INET
socket. The TCP/IP stack to be protected is represented with a SERVAUTH profile
name EZB.STACKACCESS.sysname.tconame. Access to the stack is allowed if the
user is permitted to this resource. There are no new TCP definitions required. The
function is enabled if the SERVAUTH class is active and the stack access resource
is defined. If it is not defined, the stack access check is not made.

Note: Some security products do not distinguish between a resource profile not
defined and a user not permitted to that resource. If your product does not
make this distinction, then you must define the stack access resource profile
and permit users to it whenever the SERVAUTH class is active.

The following example provides an overview of Stack Access Control. sysname
refers to the MVS system variable sysname. tcponame refers to the TCP/IP job
name. As shown in the example below, user Tom has permission to access both
Stack1 and Stack2, Joe does not have permission to access any stack, and Bob
has permission to access Stack2 but not Stack1.

Chapter 2. Security 81

Tom Joe Bob

RACF
A 4 v B

z/0S CS z/0S CS
TCP/IP Stack1 TCP/IP Stack2

SERVAUTH SAF profiles protect a TCP/IP stack:
EZB.STACKACCESS.sysname.stackname

Define the stack resources with UACC(NONE) and permit
groups or individual users to allow them to use the
TCP/IP stack (open a socket).

Figure 11. Stack Access Control overview

Port Access Control
Port Access Control uses the PORT and PORTRANGE statements to protect

against unauthorized use of non-ephemeral ports. It allows control of an
application’s ability to bind to specific TCP and UDP ports or port ranges using the
SAF. The port access support is enabled if the keyword, SAF, is specified on the
PORT or PORTRANGE statement. The SAF keyword value specifies a portion of
the resource name that represents the port. The user ID associated with the
application at the time of the bind request must be permitted to the resource before
the application is allowed to bind to the port. The port is represented by a
SERVAUTH profile name of EZB.PORTACCESS.sysname.tcpname.SAFkeyword.
SAFkeyword is the value specified on the SAF keyword on the PORT and
PORTRANGE statement.

The following example provides an overview of Port Access Control. As shown in
the example below, z/OS user WEBSERYV is permitted to bind to port 80. User Bob
is not permitted to bind to port 80.

82 z/0S V1R4.0 CS: IP Configuration Guide

FTP Web
server server Bob RACF
v

Port21 | | Port8o |

On the port reservation statement, the SAF keyword ties
z/0S CS a SAF resource to the reserved port number:
TCP/IP Stack
PORT 80 TCP * SAF WEBSRV
A SERVAUTH resource is created:
IP Router

EZB.PORTACCESS.sysname.stackname.WEBSERV

Universal access is set to NONE, and the started task user
ID of the WEB server task is permitted READ access to the
resource. Only this user ID can bind to the specified port
number.

Figure 12. Port Access Control overview

Port Access Control also augments the job name reservation method. The PORT or
PORTRANGE may be reserved with a job name, a wildcard job name (*), or the
special job name of RESERVED. If job name is specified, the port is reserved for
an application with the specified job name. If the wildcard job name is specified, the
port is not reserved for any particular job name. For both of these cases, the SAF
keyword, if specified, still verifies that the userid associated with the application at
the time of the bind to the port is permitted access to the port. The RESERVED job
name shuts down the use of a port or range of ports for any application.

The IPCONFIG, UDPCONFIG, and TCPCONFIG RESTRICTLOWPORTS
statements specify that all applications binding to a low port (1-1024) must be
APF-authorized or superuser, unless the SAF keyword is specified and the user ID
binding to the port is permitted to the SAF resource. z/OS CS client applications
that need to bind to a low port are shipped as APF-authorized.

Network Access Control
Network Access Control gives system administrators the ability to assign permission

for z/OS users to access certain networks and hosts. With this function the ability of
users to send or receive data between z/OS and certain networks can be controlled
at the z/OS. Network Access Control provides an additional layer of security to any
authentication and authorization security that is used in the network or at the peer
system by disallowing the unauthorized user to communicate with the peer network
resource.

Essential elements of this function are as follows:
* The IP network is considered the resource to be protected.

» |IP addresses are classified into security zones, in which each zone has a certain
level of security sensitivity. A default security zone exists for interfaces that are
not explicitly associated with a specific security zone. Security zones consist of

Chapter 2. Security 83

one or more, perhaps discontiguous, IP address ranges that have the same
security sensitivity and are identified by a specific zone name.

* The SAF is used to check permission of users or groups of users to access the
security zone.

» The installation defines a network access resource for each security zone and
permits users or groups of users access to the resource. The security zone is
represented by an SAF SERVAUTH profile name of
EZB.NETACCESS.sysname.tcpname.zonename.

* TCP/IP keeps a mapping of network resources by IP address to security zones.
This mapping is consulted on certain inbound and outbound operations to
determine the corresponding resource zone name for the most specific network
defined. Then the current user’s access to that resource is queried using the
SAF, and the operation will be allowed or denied completion accordingly. This
mapping is also consulted when the security ioctl is issued to extract the port of
entry zone name of a socket’s current peer.

* Network Access Control is used to control z/OS user access to an IP network via
a sockets application. Resource access checks will occur when an application
explicitly binds a socket to a local address, including the address INADDRANY
(0.0.0.0/32). Resource access checks will occur at connection setup or
acceptance time for TCP, peer identification time for UDP and RAW, and on the
first and potentially subsequent sends or receives (TCP, UDP, or RAW) to a
particular destination in a socket’s lifetime. Additionally, there is no user concept
when dealing with packets that are being forwarded through the stack and hence
no checks will be made. Network Access Control security checks are made at the
transport layer (TCP, UDP, and RAW). Other IP specific packets generated by the
stack are not covered under this function (such as ICMP echo replies, for
example).

* Network Access Control for outbound and inbound can be individually enabled or
disabled.

» TCP/IP caches security information following Network Access Control checks.
The NetAccess zone table in the TCPIP PROFILE must be rebuilt to cause
TCP/IP to recognize changes to the SERVAUTH class profiles for existing
sockets.

The following example provides an overview of Network Access Control. As shown
in the example below, z/OS user Bob is permitted access to Security Zone A but not
Security Zone B. An outbound connect from Bob is permitted to Security Zone A,
but not Security Zone B. Bob is permitted to accept connections from Security Zone
A but not Security Zone B.

84 z/0S V1R4.0 CS: IP Configuration Guide

A/

[Port21] [Port 23] [Port 1021][Pokt|44d0 |

z/OS CS
TCP/IP Stack

IP Router

Security
Zone A
IP addresses
9.67.0.0 -
9.67.255.255

Firewall

RACF

FTP Telnet Joe Bob
server server I /v

o
<]
=]
=]
@
Q
e

TCP/IP Profile definitions:

NETACCESS INBOUND OUTBOUND
9.67.40.0 255.255.248.0 ZONEB
9.67.0.0 255.255.0.0 ZONEA
Default WORLD

ENDNETACCESS

SERVAUTH resources:

EZB.NETACCESS.sysname.tcpname.ZONEA
EZB.NETACCESS.sysname.tcpname.ZONEB
EZB.NETACCESS.sysname.tcpname.WORLD

Security
Zone B

IP addresses
9.67.40.0 -
9.67.47.255

Figure 13. Network Access Control example

Netstat Access Control
Netstat Access Control allows control of access to Netstat command output from

the TSO or UNIX System Services shell environments using the SAF. The Netstat
command output is considered the resource to be protected and is represented with
a resource profile in the SERVAUTH class named
EZB.NETSTAT.sysname.tcpname.netstatoption. Access to the Netstat output is
allowed if the user is permitted to this resource. There are no new TCP definitions
required. The function is enabled if the SERVAUTH class is active and the netstat
option resource is defined. If it is not defined, the check is not made.

Note: Some security products do not distinguish between a resource profile not
defined and a user not permitted to that resource. If your product does not
make this distinction, then you must define the netstat resource profiles and
permit users to them whenever the SERVAUTH class is active.

An installation can implement a security policy that indicates which users have
authorization to selected Netstat options. The level of granularity for this security
policy can be either by individual or all Netstat options.

Fast Response Cache Accelerator Access Control

Fast Response Cache Accelerator Access Control allows control of application
access to Fast Response Cache Accelerator (FRCA) services. The FRCA
configuration ioctl is considered the resource to be protected and is represented
with a resource profile in the SERVAUTH class named
EZB.FRCAACCESS.sysname.tcpname. Access to FRCA services is allowed if the
Web server user is permitted to this resource. There are no new TCP definitions

Chapter 2. Security 85

required. The function is enabled if the SERVAUTH class is active and the FRCA
access resource is defined. If it is not defined, the check is not made.

Note: Some security products do not distinguish between a resource profile not
defined and a user not permitted to that resource. If your product does not
make this distinction, then you must define the FRCA access resource profile
and permit users to it whenever the SERVAUTH class is active.

Syslogd isolation

Syslogd isolation provides a capability for the installation to control which user IDs
and job names can write syslogd records to specified syslogd facilities. This
function enables the installation to segregate system and application syslogd
records, and to segregate syslogd records from different applications. This function
prevents an application level process from flooding a syslogd facility intended for
system use, possibly causing system syslogd records to be lost. This function is
enabled when user ID and/or job name are specified as additional criteria along
with existing facility and priority criteria to select a syslogd repository.

In addition, the user ID and job name associated with the syslogd record writer can
optionally be stored in a syslogd record based on a syslogd command-line
parameter. This capability is useful when syslogd records for multiple jobs or users
are recording in the same syslogd facility. This function enables positive
identification of the creator of the syslogd records and ensures that the syslogd
record, if spoofed, can be identified.

Syslogd isolation also provides a capability to disable reception of syslogd
messages from other hosts in the network. This capability is provided by a syslogd
command-line parameter. This parameter disables reception of syslogd messages
from all hosts. If an installation wants to allow certain hosts in the network access to
syslogd, IP Filtering can be used instead to specify which hosts are permitted to
access the syslogd UDP port.

IP filtering

The Security Server can configure the Communications Server to perform packet
filtering at the IP layer. IP filters are rules defined to either discard or permit
packets. IP filtering matches a filter rule to data traffic based on any combination of
IP source or destination address (or masked address), protocol, source or
destination port, direction of flow, or time. IP filtering can control traffic being routed,
or control access at the host that has the communication endpoint. Even when an
external firewall is providing filtering protection for the host, Communications Server
IP filtering can provide a secondary line of defense.

86 z/0S V1R4.0 CS: IP Configuration Guide

z/0S

Applications
SocketsT ya
z/OS CS
TCP
Perrhit \X
- Filter>+< Deny
Datﬁ Link

Figure 14. IP filtering at the z/OS communication endpoint

Protecting data in the network

| Network security principals

Cryptography: The foundation of good security

The foundation of good security methods begins with cryptography. Cryptography
keeps your data and communications secure using techniques such as encryption,
authentication, and data integrity. Encryption services protect sensitive data from
being read by other than the intended receiver. Cryptographic authentication and
data integrity services allow communicating hosts to detect if data is altered in
transit. Public key cryptography can identify and authenticate hosts or users. Public
key cryptography can also be used in the secure creation of symmetric session
keys for both security endpoints. Once a secure session is created, successful data
authentication and decryption occur only if both hosts have the correct session
keys.

End to end security

Cryptographic security solutions can be applied to a portion of the data path or end
to end, whichever is appropriate for your security policy. Generally, the greatest
degree of security is provided when cryptographic methods are used end to end.
However, if only portions of the data path are considered untrusted by an enterprise
(such as the Internet) it may be adequate to protect only the untrusted portion with
cryptography. z/OS offers security protocols that can be configured to protect
portions of the data path or the entire data path.

Workload-based security deployment

In making a security protocol selection, an important consideration is the application
workload to be protected. In order to illustrate this concept, it is helpful to
understand where various protocols are implemented from a protocol layering
perspective.

Chapter 2. Security 87

Secure

Applications »| Applications|«——Network
ﬁ(?l!;)eros SSL,KRB,GSSAPI »| ssL,KRB,GSSAPI SeerceS
Sockets API Sockets API
APls |

TCP/UDP TCP/UDP
IPSec——» |P/ICMP *| IP/ICMP
Data Link Data Link

Figure 15. Security protocols from a protocol layering perspective

Existing workload: The network layer is the lowest layer in the protocol stack
where end to end security over multiple hops can be applied. Network layer security
protocols provide blanket protection for upper-layer application data without
requiring modification to the application. IPSec is implemented at the network layer
and provides authentication, integrity, and data privacy between any two IP entities.
IPSec can protect a segment of the data path (e.g., between two routers), or it can
secure the data path end to end. Because IPSec is applied at the IP layer, it is a
connectionless security protocol and is applied on a per packet basis.

Secure Sockets Layer (SSL) is another popular security protocol implemented
above the transport layer at the application interface layer. TCP applications must
be modified to use SSL. SSL requires a reliable transport layer and is therefore not
used for UDP applications. SSL provides authentication, integrity, and data privacy.
SSL, originally used to secure traffic between a Web browser and Web server, can
also secure other applications. SSL is a connection-oriented security protocol and
protects all data on a connection or session.

The Communications Server has an SSL-enabled TN3270 server, thus allowing
secure access to existing SNA applications being accessed over an IP network.
Serving as a protocol gateway between the IP network and the SNA network, the
SSL-enabled TN3270 server protects the data path in the IP network from the
TN3270 client all the way to the z/OS TN3270 server. If the TN3270 Server resides
on a different host from the target SNA application, SNA Session Level Encryption
can be used to secure the SNA portion of the data path. SNA application data can
be protected without modification to the SNA applications.

New workload: For new applications, security can be built-in. One method of
building security into the application on z/OS is to use z/OS System SSL and
Kerberos.

Newer versions of network services such as SNMPv3 and Secure DNS, which are
supported by the Communications Server, have security built into the application
protocol using standards-based specifications for secure interoperability.

88 z/0S V1R4.0 CS: IP Configuration Guide

| Network security protocols

| IPSec and VPNs
I For more information about IPSec and VPNs, refer to [z/0S Security Server Firewall

I Technologies

The IPSec solution: 1PSec is defined by the IPSec Working Group of the IETF. It
provides authentication, integrity, and data privacy between any two IP entities.
Management of cryptographic keys and security associations can be either manual
or automated via an IETF defined key management protocol called Internet Key
Exchange (IKE).

IPSec uses IP filtering to determine which traffic should be protected by IPSec. A
type of permit rule specifies permit with IPSec. The IP filters represent IP security
policy to the stack by specifying the traffic that requires IPSec. The filters are also
used in locating the outbound IPSec security association, and for verifying that
inbound traffic was received using the correct security association.

IP filtering can be used to avoid the overhead of multiple security protocols when
alternate security protocols are used to secure specific applications. For example,
you might want to exclude Web traffic (based on the well-known secure port of the
Web server - port 443) from IPSec coverage because you would like to use SSL.

IPSec provides the flexible building blocks that can support a variety of
configurations. Because an IPSec security association can exist between any two
IP entities, it can protect a segment of the path or the entire path.

IPSec allows the creation of Virtual Private Networks (VPN). A VPN enables an
enterprise to extend its network across a public network such as the Internet
through a secure tunnel (or security association). IPSec and VPN enable the secure
transfer of data over the public Internet for same-business and business-to-business
communications, and protect sensitive data within the enterprise’s internal network.
The figure below shows some of the typical IPSec configurations. In this figure,
IPSec security associations are shown between two firewalls, between client and
firewall, and between client and zSeries server.

IPSec
Security
.-Associations

zSeries

Enterprise Network
or Itranet

Enterprise Network - * :
or Intranet

>EmD—T *

Business
Partner

v
rf>sSmDn—m

g
¢

Remote Intranet
Access Host

| Figure 16. e-business scenarios with Virtual Private Networks
IPSec concepts and components:

Security Associations: The concept of a Security Association (SA) is fundamental
to IPSec. An SA is a logical connection between any two IPSec systems. The SA
defines the security services for traffic that it carries. The scope of protection of an

Chapter 2. Security 89

SA can vary. It can be wide, which means that the SA protects traffic for multiple
connections (e.g., all traffic between two hosts). It can be narrow, which means that
the SA protects traffic for a single connection.

An SA setup must occur before data is sent over a network. This setup can be
accomplished by either configuring the SA manually, or creating the SA dynamically
using the IKE protocols.

An SA can be in either of two modes:

» Transport mode is used by a host in cases where the data endpoint addresses
are the same as the SA endpoint addresses. In this mode, the IPSec protocol
header is inserted after the IP header and before the payload of the original IP
datagram.

* Tunnel mode must be used whenever the SA endpoint addresses differ from the
connection endpoint addresses. For this reason, SAs that start or end in firewalls
that do not own the connection endpoint address are always tunnel mode. In this
mode, the original IP datagram is made the payload of a newly constructed
datagram.

IPSec has three major components:

* |IP Authentication Header (AH)

* |P Encapsulating Security Protocol (ESP)
* Internet Key Exchange (IKE)

IP Authentication Header (AH): AH provides data integrity, data origin
authentication, and an optional replay protection service. Data integrity is ensured
by using a message digest generated by an algorithm such as HMAC-MD5 or
HMAC-SHA. Data origin authentication is ensured by using a shared secret key to
create the message digest. Replay protection is provided by using a sequence
number field with the AH header. AH authenticates IP headers and their payloads
with the exception of certain header fields that can be legitimately changed in transit
such as the Time To Live (TTL) field. The following diagram shows the additional
headers added as the result of AH processing and the scope of the authentication.

| sRcepsT@,.| Payload | Original Datagram
AH
AH-Tunnel: New IP Hdr | i | SRC@,DST@,..| Payload
N Authenticated, "
: AH
AH-Transport: | srcepsTe.|y | Payoad |
N Authenticated, "
1. Except for changeable header items

Figure 17. IPSec AH protocol header formats and security coverage

90 z/OS V1R4.0 CS: IP Configuration Guide

IP Encapsulating Security Protocol (ESP): ESP provides data confidentiality
(encryption) and authentication (data integrity, data origin authentication, and replay
protection). ESP can be used with confidentiality only, authentication only, or both
confidentiality and authentication. When ESP provides authentication functions it
uses the same algorithms as AH, but, the coverage is different. The following
diagram shows the additional headers added as the result of ESP processing and
the scope of the authentication and encryption.

| sRce,psT@,.| Payload | Original Datagram
ESP-Tunnel:
ESP ESP | ESP
New IP Hdr Trailer SRC@,DSTe@,.. Payload Trailer | Auth
~ - Encrypted i’ -
h Authenticated "

ESP-Transport:

ESP ESP ESP
SRC@,DST@... Auth Payload Trailer | Auth

Encrypted
Authenticated

A

A
v Y

Figure 18. IPSec ESP protocol header formats and security coverage

Internet Key Exchange (IKE): |KE supports automated negotiation of SAs and
automated generation and refreshing of cryptographic keys. The secure exchange
of keys is the most critical factor in establishing a secure communications
environment.

IKE operates at the application layer. It negotiates with its IKE peer to create two
types of security associations called Phase 1 and Phase 2. IKE uses Phase 1 SAs
to protect IKE flows. IPSec uses Phase 2 SAs to protect data transmissions. Once
a Phase 2 SA is negotiated, IKE installs the Phase 2 SA into the stack so IPSec
can use the SA to protect IP packets.

There are several methods by which IKE hosts can authenticate their IKE peers.
Two of these methods are Pre-shared Key and RSA Signature. With Pre-shared
Key, each IKE host is initially set up with a key that is used for authentication. RSA
Signature uses a digital X.509 certificate for authentication. RSA Signature is a
more scalable solution. Pre-shared Key requires that each host be keyed with every
potential IKE partner key. With RSA Signature, each host is configured with its own
host certificate and a certificate for the mutually trusted certificate authority that
signed the host certificate.

Chapter 2. Security 91

Host Certificate Host Certificate
stored locally stored locally

1. Negotiate phase | Security Association (Get a
master key)

2. Negotiate Security Associations (phase II)

3. Generate session keys, refresh keys and SAs

L IKE < > IKE
//

Install SAs and [Sockets API| [Sockets API|
filters into IP
stack TCP/UDP TCP/UDP

- IPricvP |, IP/ICMP

- IPSec Security Association(s))
Data Link Data Link

Figure 19. IPSec and IKE overview

Since the IKE protocols deal with initializing keys, they must be capable of running
over links where no security can be assumed to exist. IKE addresses the problem
of secure key distribution by automatically deriving the keying material using a
Diffie-Hellman exchange during the Phase 1 IKE negotiation. This automatic
creation and distribution of the key during Phase 1 eliminate the need to manually
distribute the session key between remote sites. Besides the obvious administrative
advantage of IKE, the manual method of key distribution is prone to key
compromise.

In addition, IKE non-disruptively refreshes the session keys based on the security
policy of the installation. IKE specifies that this can be based on time (lifetime)
and/or bytes transmitted (lifesize). IKE provides a property called Perfect Forward
Secrecy (PFS). If PFS is used, each Phase 2 key is derived independently through
a separate Diffie-Hellman exchange. With PFS, if a single key is compromised, the
integrity of subsequently generated keys is not affected. Manual IPSec has no key
refresh capabilities unless the security associations are deactivated, reconfigured
with the new key, and then reactivated. Because of the disruptive nature of key
refresh with manual IPSec, key lifetimes are defined as much larger values thus,
increasing the security exposure.

2/0S IPSec and VPN support: The Communications Server provides z/OS IPSec
support. The Security Server provides Internet Key Exchange (IKE) support and
Virtual Private Network (VPN) configuration. Together these z/OS elements combine
to provide VPN support for z/OS.

z/OS provides support for the latest IETF RFCs (2401-2406, 2409, 2410) including
Triple DES for strong encryption. A crypto coprocessor provides hardware assist for
IPSec encryption and decryption. Both IPSec transport and tunnel modes are
supported. IKE supports both pre-shared key and RSA Signature (which uses
host-based X.509 certificates) methods of authentication. The z/OS IKE certificate is
stored in RACF.

Configuration considerations for IPSec: In order to enable this support, you must
specify the FIREWALL option on the IPCONFIG statement.

92 2/0S V1R4.0 CS: IP Configuration Guide

When you configure a mixture of secure and nonsecure adapters for z/OS CS and
filter rules in your IPSec policy do not have an interface value of BOTH, you should
ensure that all routes to the destinations in a single filter rule go through adapters
with the same security level (for example, either secure or nonsecure).

For more information on using IPSec with Dynamic VIPAs, see [‘Sysplex Wide

[Security Associations” on page 228,

SSL and TLS

The SSL protocol provides data encryption, data origin authentication, and message
integrity. It also provides server and client authentication using X.509 certificates.
SSL begins with a handshake during which the server is authenticated to the client
using X.509 certificates. Also, the client can optionally be authenticated to the
server. During the handshake, security session parameters, such as cryptographic
algorithms, are negotiated and session keys are created. After the handshake, the
data is protected during transmission with data origin authentication and optional
encryption using the session keys.

The cryptographic algorithms that are used for the SSL session are based on the
algorithms the server and client are willing to use. During the SSL handshake, the
client and server exchange a list of algorithms. The algorithm selected is based on
the best match between the client’s list and the server’s list. The selectable
algorithms can be limited by configuring a subset of allowable algorithms at the
server. Servers can support encryption using Triple DES as well as other encryption
algorithms (RC2, RC4, and DES). A hardware crypto coprocessor, if available, is
used for DES and Triple DES encryption.

SSL requires a server X.509 certificate, which is stored in its certificate keyring. The
certificate is used as part of the SSL handshake server authentication process. The
client validates the server certificate. SSL optionally uses a client X.509 certificate
that is used as part of the SSL handshake client authentication process. In order to
use client authentication, the client must have a client X.509 certificate. Successful
client authentication requires that the Certificate Authority (CA) that signed the client
certificate be considered trusted by the server. To be considered trusted, the
certificate of the CA must be in the keyring of the server.

Refer to [Transport layer security” on page 320 for detailed information on obtaining
certificates.

SSL is not defined by the IETF. TLS is based on SSL and is defined by the IETF as
RFC 2246.

TN3270 SSL: The Communications Server provides an SSL-enabled TN3270

server that protects the data path in the IP network to the z/OS TN3270 server

using the SSL protocol. IBM Host On Demand and PCOMM provides a TN3270
client that is enabled for SSL.

Chapter 2. Security 93

Other Intranet

Servers RACF @ Server
Certificate
TN3270
Server
zSeries
Enterprise

TCP/IP | | SNA Servers

Firewall

SSL
Protection
from client to
server

TN3270 SSL
Client (e.g. HOD)

TN3270
Client

) Client
Certificate

The Communications Server TN3270 SSL support provides several extensions for
RACF-based access control to the TN3270 server. These extensions prevent a
client from seeing the USSMSG (log on screen) unless the client is authorized. In
order to use this support, the client certificate must be defined to RACF using
RACEF digital certificate services. The first level of authorization checking verifies
that the RACF userid represented by the client certificate is defined to RACF. The
next level of authorization requires that this RACF userid be permitted to access the
TN3270 server port. In this case, the TN3270 server port is represented as a RACF
resource using the SERVAUTH class.

Figure 20. TN3270 SSL overview

Multiple port support: One method of enabling a mix of SSL and non-SSL traffic is
to use TN3270 multiple port support. Using the multiple port support, separate ports
can be defined with one port being dedicated to non-SSL traffic and another port
dedicated to SSL traffic. Ports designated as SECUREPORT are capable of using
SSL. The following diagram illustrates the use of multiple ports. In this case,
intranet clients are not required to use SSL. These clients connect to the BASIC
port (port 23 in this example). All clients connecting from the Internet are required to
use SSL. These clients use the SECUREPORT (port 1023 in this example). Packet
filtering is used at the firewall that separates the intranet and the Internet to control
access to the TN3270 ports. In order to prevent Internet access to the BASIC port,
port 23 is blocked at the firewall. The SECUREPORT, port 1023, is permitted at the
firewall. In this scenario, the best security is achieved when SSL client
authentication with the TN3270 RACF extensions is used. This support ensures that
the client has authority to attempt to log on to SNA applications through TN3270.

94 z/0S V1R4.0 CS: IP Configuration Guide

Regardless of the method of authentication used, the SNA application should
identify and authenticate the end user using RACF before any application access is
granted. SSL encryption services, if used, would encrypt the user ID and password.

RACF TN3270
Protection

2nd Secure Port
Port 1023

Separate Ports Port 23
. not allowed

Internet

Enterprise Network
Port 23 | or Intranet o

Firewall

Figure 21. Using multiple TN3270 ports to separate SSL and non-SSL traffic

This next diagram illustrates how IPSec and SSL can be combined to provide a
more secure remote access from the Internet to SNA applications than is depicted
in the previous diagram. In this scenario, IPSec AH protocol is used between the
user’s PC and the firewall for authentication. The firewall is open for port 1023 for
traffic that is authenticated with IPSec only. The firewall would discard traffic for port
1023 that cannot be authenticated by IPSec. The additional security provided by
IPSec protects the zSeries from unauthorized access attempts and denial of service
attacks by hosts outside the VPN.

RACF TN3270
Separate Ports with IPSec Protection —
2nd Secure Port
Port 1023
Internet
i Port 23
Enterprise Network
SSL or Intranet />
= IPSec Firewall
Authentication

Figure 22. Combining TN3270 SSL with IPSec client-to-firewall authentication

TN3270 use of single port for SSL and non-SSL connections: A single port can be
used to support a mix of SSL and non-SSL traffic. In this case the port is
designated as SECUREPORT. In order to support the configuration of various SSL
security policies for a single port, the SECUREPORT designation defines the port to
be capable of using SSL, rather than the port must use SSL. The PARMSGROUP
and BEGINVTAM blocks are used to specify the connection type (CONNTYPE)
associated with a subset of the port’s connections. A PARMSMAP statement is used
to associate the PARMSGROUP information with specific IP address, hostname, or
linkname. CONNTYPE specifies the SSL policy for the connections that are
associated with it.

The TN3270 server supports both negotiated and non-negotiated SSL. TN3270
negotiated SSL is an IETF defined extension to the TN3270 protocol. With TN3270
negotiated SSL, the decision to use SSL for a connection is based on the outcome
of a negotiation between the TN3270 client and server using TN3270 protocols.

Chapter 2. Security 95

This negotiation is performed after the TN3270 connection is established, and if
SSL is negotiated, the SSL handshake is performed. With non-negotiated SSL, an
SSL handshake is required immediately after connection establishment. Concurrent
use of both TN3270 negotiated and non-negotiated SSL connections are allowed for
a single port.

The following diagram illustrates the use of a single TN3270 port that allows a mix
of SSL and non-SSL traffic. In this case, intranet clients are not required to use
SSL. All clients connecting from the Internet are required to use SSL. Both intranet
and Internet clients connect to the SECUREPORT (port 23 in this example). In this
scenario, IPSec AH protocol is used between the user's PC and the firewall for
authentication. The firewall is open for port 23 for traffic that is authenticated with
IPSec only. The firewall would discard traffic for port 23 that IPSec cannot
authenticate. In this scenario, packet filtering without IPSec cannot be used at the
firewall that separates the intranet and the Internet to control access on the basis of
port since only one port is used. Without IPSec AH, all access control checks are
deferred to the TN3270 Server. The additional security provided by IPSec at the
firewall protects the zSeries from unauthorized access attempts and denial of
service attacks by hosts outside the VPN.

RACF TN3270

Protection Enterprise

Security
Policy

Firewall

Enterprise Network
or Intranet

Internet
SSL

IPSec
Authentication

Figure 23. TN3270 SSL and non-SSL traffic using a single TN3270 port

Express Logon Feature (ELF): With emulator products, the traditional method of
authenticating the user is through user ID and password which is kept in sync with
the host access control facility (RACF, ACF/2, AS/400® user management, etc.).
The Express Logon Feature simplifies user ID and password administration for
users signing on to SNA applications using TN3270. ELF allows an end user to use
an SSL-authenticated X.509 certificate for authentication to the SNA application
instead of using a user ID and password. ELF requires IBM Host Integration
software. The Host Integration requirements depend on the configuration.

There are two network designs available; a two-tier or a three-tier approach. Both
are discussed in [Appendix C, “Express Logon Feature (ELF)” on page 749

TLS-enabled FTP: The Communications Server FTP server and client support
Transport Layer Security (TLS). This support enables secure file transfer by
providing data privacy, message authentication, and message integrity services for
data sent and received using the FTP control and data connections.

96 z/0OS V1R4.0 CS: IP Configuration Guide

Client and Server and
& trustgd CA’s trusted CA’s
Certificate "

Certificate
-—
w Control connection I:ACF

FTP Cllent FTP Server Client certificate
to RACF use mapping

/

FTP DATA FTP.DATA

= z/OS TSO or)
Unix Shell-based Data connection
Clients 4\
Cllent configuration Server configuration
for TLS for TLS

Figure 24. FTP client and server TLS overview

The TLS-enabled FTP server can be configured to run in two modes. Conditional
mode allows an installation to use a single port for both TLS and non-TLS FTP
control connections. In conditional mode, the FTP client and server negotiate the
use of TLS based on a subset of the FTP security negotiation functions
documented in RFC 2228. Once the use of TLS is negotiated, the TLS handshake
is performed which establishes the TLS session and negotiates security parameters
and session keys. Unconditional mode allows an installation to use a separate port
for all TLS traffic. Port 990 is the port designated for control connections for
unconditional TLS mode. With unconditional mode, it is assumed that TLS is
required, and after the FTP control connection is made, the TLS handshake is
performed.

TLS secures the control connection and optionally the data connection. TLS for the
data connection requires a TLS session for the control connection. FTP server
configuration controls whether the FTP server requires TLS for the control and data
connections. This TLS protection by connection type is negotiated during the FTP
RFC 2228 negotiation that precedes the TLS handshake. During the lifetime of the
control connection, the use of TLS or no TLS for the data connection can be
requested by the FTP client using the FTP RFC 2228 commands.

FTP TLS optionally authenticates the client during the TLS handshake using a client
X.509 certificate. FTP server configuration specifies whether TLS client
authentication is required and what type of validation of the certificate is required.
For example, the FTP server can be configured to map the client certificate to a
RACF userid and then verify that the userid associated with the certificate matches
the userid entered by the end user.

Configuration to control TLS capabilities and options for both FTP client and server
TLS are stored in the FTP.DATA data set.

Kerberos

Kerberos is a network authentication protocol that is designed to provide strong
authentication for client/server applications using secret-key cryptography. The
Kerberos network authentication protocol assumes that services and workstations
communicate over an insecure network. It allows clients and servers to do either
one way, or two way (mutual) authentication. It allows for data encryption and
prevents passwords from having to be retyped to access networked services and

Chapter 2. Security 97

also prevents their transmission in plain text over the network. This feature can help
reduce the need to manage multiple passwords.

z/OS CS no longer ships Kerberos V4. z/OS Security Server ships a different
Kerberos, Version 5. Because Security Server Kerberos does not require DCE login
and eliminates the need for multiple registries, it is recommended that new
applications be written to Kerberos Version 5 and use z/OS Security Server.

The following Communication Server IP applications now include support for
Kerberos Version 5 security protocol:

« The UNIX System Services Telnet Server now allows clients supporting Kerberos
Version 5 (as described in RFC 1416) to log in to the shell environment using
Kerberos as the authentication protocol.

« The FTP client and Server now support connections to or from other clients and
servers supporting Kerberos Version 5 authentication for the FTP protocol (as
described in RFC 2228).

* The UNIX System Services RSH server can now also be configured to support
client authentication using Kerberos from RSH clients supporting Kerberos
Version 5.

OSPF authentication

Communications Server OSPF (Open Shortest Path First) dynamic routing protocol
supports message authentication and message integrity of OSPF routing messages
through the use of the OSPF MD5 Authentication security protocol as defined by
RFC 2328. OSPF MD5 Authentication ensures that an unauthorized IP resource
cannot inject OSPF routing messages into the network without detection, thus
ensuring the integrity of the routing tables in the OSPF routing network.

OMPROUTE computes a secure MAC for the routing message using the MD5
algorithm. This MAC is sent with the routing message so that the message can be
authenticated by the receiver.

Secure DNS
The Communications Server supports DNS at the Version 9.1 of BIND. This level of

DNS has built-in security features, DNSSEC and TSIG.

DNSSEC: DNSSEC ensures that DNS query results are not spoofed and in fact
originate from a trusted DNS. DNSSEC defines extensions to DNS that provide
data integrity and authentication to security aware resolvers and applications
through the use of cryptographic digital signatures. DNSSEC is defined by the IETF
in RFC 2535.

TSIG: TSIG is a protocol for Secret Key Transaction Signatures for DNS. This
protocol allows for transaction level authentication using shared secrets and one
way hashing. It authenticates dynamic updates as coming from an approved client,
or responses as coming from an approved recursive name server.

SNMPv3

z/OS CS SNMP supports SNMPv3. The legacy community-based protocols
SNMPv1 and SNMPv2 are also supported. SNMPv3, defined in RFCs 2570 through
2575 is the standards-based solution for SNMP security. It is categorized as a
User-based Security Model (USM) which provides different levels of security based
on the user accessing the managed information. To support this security level, the
SNMPv3 framework defines several security functions, such as USM for
authentication and privacy, and view-based access control model (VACM) which
provides the ability to limit access to different MIB objects on a per-user basis, and

98 z/0S V1R4.0 CS: IP Configuration Guide

the use of authentication and data encryption for privacy. However, SNMP is not
just enhanced security. It defines an architecture for SNMP management
frameworks, with the intent that pieces of the architecture can advance over time
without requiring the entire structure to be rewritten. For that reason, three major
subsystems are defined:

» Message processing subsystem

» Security subsystem

» Access control subsystem

The framework is structured so that multiple models can be supported concurrently
and replaced over time. For example, although there is a new message format for
SNMPv3, messages created with the SNMPv1 and SNMPv2 formats can still be

supported. Similarly, the user-based security model can be supported concurrently
with the community-based security models previously used.

Security Event Reporting

Integrated Intrusion Detection Services (IDS)

Intrusion is a broad term encompassing many undesirable activities. The objective
of an intrusion may be to acquire information that a person is not authorized to
have (information theft). It may be to cause business harm by rendering a network,
system or application unusable (denial of service). Or it may be to gain
unauthorized use of a system as a stepping stone for further intrusions elsewhere.
Most intrusions follow a pattern of information gathering, attempted access and then
destructive attacks. Some attacks can be detected and neutralized by the target
system. Other attacks cannot be effectively neutralized by the target system. Many
of the attacks also make use of spoofed packets which are not easily traceable to
their true origin. Many attacks now make use of unwitting accomplices - machines
or networks that are used without authorization to hide the identity of the attacker.
For these reasons, detecting information gathering, access attempts and attack
accomplice behaviors is a vital part of intrusion detection.

Attacks can be initiated from outside the internal network or from inside the internal
network. Particularly vulnerable is an open system such as a public Web server or
any machine that is placed in service to serve those outside the internal network. A
firewall can provide some level of protection against attacks from outside. However,
it cannot prevent attacks once the firewall has authorized an external host to
communicate with hosts in the internal network, nor can it provide protection in the
case where the attack is initiated from inside the network. In addition, end to end
encryption limits the types of attacks that can be detected by an intermediate device
such as a firewall.

An Intrusion Detection System can provide detection of some types of attacks.
Common intrusion detection system types currently deployed are network sniffers or
sensors and vulnerability scanners. Sniffers, placed at strategic points in the
network (in front or behind a firewall, in the network, or in front of a host), operate in
promiscuous mode, examining traffic real-time that passes through on the local
network. Sniffers use pattern matching to try to match a packet against a known
attack which is expressed as an attack signature. Sniffers work best against single
packet attacks. Limitations are that they cannot deflect the attacking packet, and
they cannot evaluate against encrypted data. Scanners do not detect intrusions in
real-time. They examine a system periodically looking for vulnerabilities or evidence
of intrusion. Some scanners evaluate historical data and can identify behavioral
anomalies and patterns associated with intrusions.

Chapter 2. Security 99

The z/0S Communications Server provides Intrusion Detection Services (IDS)
which enable the detection of attacks and the application of defensive mechanisms
on the z/OS server. The focus of IDS is self-protection. IDS can be used alone or in
combination with an external network-based Intrusion Detection System. The IDS is
integrated into the zZOS Communications Server stack and can provide the
following functions unavailable from an external Intrusion Detection System.

» z/0OS CS IDS evaluates data that has been encrypted by IPSec end to end after
decryption on the target server system.

» z/OS CS IDS avoids the overhead of per packet examination against a table of
signatures for many known attacks. This is accomplished by integrating the
attack detection probes into existing error detection logic. This detection is done
in real-time. IDS policy is examined when an attack is detected to determine the
action to be taken.

« z/OS CS IDS detects statistical anomalies real-time. Real-time detection is
achieved since it is easier for the target system to keep stateful data/internal
thresholds and counters.

» z/OS CS IDS implements prevention type of policies that are executed on the
system that is the target of the attack. Prevention policies include packet discard
and connection limiting.

The IDS is policy driven and the policies are kept in LDAP. These policies
determine what actions to take for various IDS events. IDS events detected include
scans, single packet attacks against the TCP/IP stack, and flooding. Actions include
packet discard, connection limiting, and reporting. IDS events can be recorded in
syslog files and/or the console. IDS statistics can be recorded in syslog. Packet
traces can be taken to document suspicious activities. The TRMDSTAT command
provides summary and detailed reporting of IDS events and statistics.

The following figure shows the z/OS CS IDS architecture.

LDAP Server
IDS Policy Repository

Download policy

D

Administration

Download policy

Download
policy
Log Events >
2/0S and Statistics Svslo
Policy ltavp | d
Agent 1\ TR
Intrusi
:Bsstag ! Sockets API gv;unstlon Event messages
olicy ... % L= to local console
IDS Pol TCP/UDP | | .. =
IP/ICMP), [
Data Link\ >
Trace suspicious

activit
g y

Attack

Figure 25. Intrusion Detection Services overview

100 z/0S V1R4.0 CS: IP Configuration Guide

Chapter 3. Customization

Before you begin customizing, it is assumed that you know what configuration data
sets are used by the TCP/IP address space, their search order, and considerations
for what type of TCP/IP stack you will be running in your environment (for example,
Enterprise Extender (EE) and multiple stacks). See [Chapter 1, “Configuration|
foverview” on page 3| for this information.

After reading this chapter, you will know how to configure and start syslogd and the
TCP/IP stack. You should understand the relationships of TCP/IP configuration files
as they apply to the TCP/IP address space. The four main configuration files that
you will be working with are:

+ TCPIP.DATA

* PROFILE.TCPIP

+ HOSTS.LOCAL

» ETC.IPNODES

You should be able to use the following commands to verify customization:

TSO PING, z/0S UNIX oping, and z/OS UNIX ping
Sends IP datagrams to a specified destination host, requesting a reply, and
measures the round trip time. This helps you to verify the interfaces defined
to the TCP/IP address space.

TSO NETSTAT, z/0S UNIX onetstat, and z/0OS UNIX netstat
Queries TCP/IP about the network status of the local host. With NETSTAT,
you can verify most TCP/IP customization values that can be set from the
PROFILE.TCPIP.

TSO HOMETEST
Verifies your host name and address configuration.

TSO TRACERTE, z/0S UNIX otracert, and z/0OS UNIX traceroute
Displays the route that a packet takes to reach a requested destination.

Configuring the syslog daemon (syslogd)

Configuration statements

The syslogd processing is controlled by a configuration file called /etc/syslog.conf
(see the following sample file) in which you define logging rules and output
destinations for error messages, authorization violation messages, and trace data.
Logging rules are defined using a facility name, a priority code, and the user ID and
job name of the program that generated the message. The facility name and priority
code are passed on the logging request from an application when it wants to log a
message. The user ID and job name are provided by the system. Refer to
[Communications Server: IP Configuration Referencelfor more information about
logging rules.

As shown in the following sample /etc/syslog.conf file, comments can be added to
the configuration file by placing the # character in column one of the comment line.
Everything following the # character is treated as a comment. This sample is
available in /usr/lpp/tcpip/samples/syslog.conf in the HFS.

Licensed Materials - Property of IBM

5694-A01
(C) Copyright IBM Corp. 1992, 2002

© Copyright IBM Corp. 2000, 2002 101

102

Status = CSVIR4

/etc/syslog.conf - control output of syslogd

The # sign begins a comment which extends to the end of the line.
Blank lines are ignored.

Rules in this file specify types of messages which syslogd will
store, and where syslogd will store it.

See IP Configuration Reference for detailed information about
the syntax. These comments are meant to provide only a general
overview.

Four criteria can be used to select messages for processing:

1) user ID associated with application generating the message

* can be specified for the user ID if the user ID is not
important.

2) job name of application generating the message

* can be specified for the job name if the job name is not
important.

3) facility of the message, as specified by the application
This is user, mail, news, uucp, daemon, auth, cron, Tpr, or
localO-Tocal7. Consult the documentation for the application
to determine which facility the application specifies.
A special facility, mark, specifies that syslogd should log
mark messages on a regular basis. These can be used to verify
that syslogd was operational during a specific time interval.

4) priority of the message, as specified by the application

This is emerg, panic, alert, crit, err, error, warn, warning,
notice, info, or debug.

A special priority, none, specifies that messages with the
specified user ID, job name, or facility should not be
selected.
These criteria are specified together as
userid.jobname.facility.priority
or, if user ID and job name are both *, as
facility.priority
This can be combined in a series as
userid.jobname.facility.priority;userid.jobname.facility.priority
The criteria for selecting messages for processing are combined
with a destination, which tells syslogd what to do with selected
messages.

criteria destination

The destination can be a file, one or more user IDs, SMF, syslogd
at a remote host, or all logged-in users.

z/OS V1R4.0 CS: IP Configuration Guide

SR SR SR SR SR S SR SR SR SR SR SR S SR S SR SR S S SN S S S S S S S SR SHe SHR SHe SHR SR R SR S S S S SR SR SR SR SR SR SR SRR SR SRR SR SR S SRR SR SRR SR SRR S SR S SR S SR S SR SR

The following example stores messages with facility daemon or
locall in the file /directory/logfile.

daemon.*;locall.* /directory/logfile

The directory structure used in this sample configuration is
expected to be created automatically by syslogd, with a new
directory of log files for each day. This requires two types
of configurations outside of the scope of this configuration
file:

1) syslogd command-Tine option

The syslogd -c command-line option should be enabled, causing
syslogd to create log files and directories if they do not
already exist.

2) cron job

A cron job should be utilized to wake up syslogd at the
beginning of each day to switch to new log files in a new
directory. Here is the cron job definition:

10 ** % kill -HUP “cat /etc/syslog.pid~

This job should be defined for a user ID with UID zero so that
it has permissions to send the signal to syslogd.

See UNIX System Services Planning and UNIX System Services
Command Reference for more information about cron.

A sample shell script is provided for removing log files which are
a specifed number of days old. It assumes the same directory
structure which is used in this sample configuration.

A11 example rules except for the last one are commented-out. Some
or all of the example rules will need to be changed for your
environment. Each example rule contains an explanation of changes
which may be required.

#H##EF R AR F R AR R A RS F AR

Write all messages with priority crit or higher to the MVS operator
console. See the UNIX System Services Planning manual for more
information about the /dev/console special file.

*.crit /dev/console

tH######## A

Write all messages from syslogd itself to the file
/var/1og/YYYY/MM/DD/syslogd.log and to the system console.

Notes:

a) If syslogd is invoked as a started task with job name
SYSLOGD, the name of the long-running syslogd job is
SYSLOGD1. If syslogd is invoked from a shell script
(e.g., /etc/rc) with job name SYSLOGD, the name of the
long-running syslogd job is SYSLOGD followed by a
digit.

If syslogd runs with a different job name on your system, the
rule will have to be changed accordingly.

b) During initialization, syslogd writes messages to
/dev/console. These rules cover messages during steady-

Chapter 3. Customization

103

104

state.

#

.SYSLOGD.x . /var/log/%Y/%m/%d/sys1ogd
.SYSLOGD.* . /dev/console

#
########HHHH A A A A A A A A A A

Write all messages from inetd to the Tog file inetd and to the
console.

Notes:

a) If inetd is invoked as a started task with job name INETD, the
name of the long-running inetd job is INETD1. If inetd is
invoked from a shell script (e.g., /etc/rc) with job name INETD,
the name of the long-running inetd job is INETD followed by a
digit.

If inetd runs with a different job name on your system, the rule
will have to be changed accordingly.

* INETD* . %, * /var/log/%Y/%m/%d/inetd
%, INETD* ., * /dev/console

#H#####H A HH A F AR RS F RS AR AR A

Write all messages with priority err or higher from applications
which specify facility "daemon" to the log file daemon.

Because we chose to log messages from syslogd and inetd separately,
we'll filter out those messages from this rule using special
priority none.

Notes:

a) In this example, SYSLOGD followed by some other character is the
job name of syslogd. If it is different on your system, change
the rule.

b) In this example, INETD followed by some other character is the
job name of inetd. If it is different on your system, change the
rule.

daemon.err;*.SYSLOGD*.*.none;*.INETDx.*.none /var/log/%Y/%m/%d/daemon

lgdtaddaddadtadtadssdpadpddsdtadsdsdtsdtsdsdaddsdadadsagaanadaad

Write all messages from applications which specify facility "auth"
to the log file auth.

auth.* /var/log/%Y/%m/%d/auth
#H##EFHERRRERRR AR R AR AR AR AR

Write all messages from applications which specify facility "mail"
to the log file mail.

mail.x /var/log/%Y/%m/%d/mail
iddgzsaaddddsassddddsdsasaddddddssaadddddgsdaaddsdddadddddaasiddiad
Write all messages with priority err and higher from otelnetd and
other applications which specify facility "locall" to the log file
locall.

locall.err /var/1og/%Y/%m/%d/Tocall

idgaddsadsdaaddgadddaddsadatpagdadddaaddsadspaddsadgaagdsadatasi

S S S S 3R 3R S S S 3R 3R S S I 3R 3R 3 S I I3 3 SR S I3 3 3 S SH I 3 3R S S SR e 3R S S SR I3 3R S S I 3 3R S S I 3 3 S S 3R 3 3 S S 3R 3k 3k

z/OS V1R4.0 CS: IP Configuration Guide

Write all messages from otelnetd and other applications which
specify facility "locall" when running as user SMITH to the log file
locall.smith. This could be useful if, for example, otelnetd traces
need to be collected for a problem which user SMITH is experiencing
and you do not wish to collect otelnetd traces from all user IDs.

SmITh.*.locall.* /var/log/%Y/%m/%d/locall.smith
lgadaddaddaddadadadpastddsadadtsdantsdtsdsdaadaatantantansanadiad
Write all messages with priority err and higher to SMF. These will
be stored in SMF record type 109. SMF must be active and
configured to accept record type 109. The user ID associated with
syslogd must have read access to BPX.SMF. See UNIX System Services
Planning for more information about BPX.SMF.

*. err $SMF

idgaddsadsdaadddadddgaddtadadpaddaasdaadaadgdpadddadgdaaddtaagdiiaii

SoSR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR Sk

Write all messages with priority crit and higher to the syslogd on
host 192.168.1.9. The host may be specified by IPv4 address or by
a name that resolves to an IPv4 address.

#

*.crit 0192.168.1.9

#
liidatdaddsddsdtsdsddssdsddsddsdtsdtsdsddsddsdagddsdaadasdtsdsadaddsi
#

Write all messages with priority err and higher to log file errors.
#

THIS EXAMPLE STATEMENT IS UNCOMMENTED.

#
*.,err /var/1og/%Y/%m/%d/errors
#

Starting and stopping syslogd

Following is the syntax for the syslogd command:
syslogd [-f conffile] [-i][-u[-c[-d][-m markintervall [-p logpath]

syslogd recognizes the following options:
-f Configuration file name.
-i Do not receive messages from the IP network.

-u For records received over the AF_UNIX socket (most messages generated
on the local system), include the user ID and job name in the record. In this
case, a forward slash, the user ID, and the job name will follow the local
host name for messages received over the AF_UNIX socket. The forward
slash, which immediately follows the local host name, can be used to
determine whether or not the user ID and job name is being recorded. If not
recorded, a blank immediately follows the local host name. When user ID or
job name is not available, N/A will be written in the corresponding field.

-C Create log files and directories automatically.

-d Run syslogd in debugging mode (see |“Diagnosing syslogd configuration|
pproblems” on page 108 for more information).

-m Number of minutes between mark messages. The default value is 20
minutes. The following rule must be coded for each logfile that you want a
mark record recorded in: mark.info.

Chapter 3. Customization 105

-p Path name of z/OS UNIX character device for the datagram socket. The
default value is /dev/log.

Note: This option is not used frequently. If you selected the -p option,
syslogd will not function properly.

To specify the job name and pass the appropriate environment variables to the
syslogd process, start syslogd using a shell script such as the following:
#

Start the syslog daemon
#

export _BPX_JOBNAME='sysTogd'
/usr/sbin/syslogd -f /etc/syslog.conf &

You can execute this shell script directly from the /etc/rc file to start syslogd at z/OS
UNIX initialization.

If an incorrect argument or number of arguments is entered, syslogd exits and the
return code is 1. In all other situations in which syslogd exits, the return code is O.

To terminate syslogd, send a SIGTERM signal.
ki1l -s SIGTERM <PID>

To force syslogd to reread its configuration file and activate any modified
parameters without stopping, send a SIGHUP signal. syslogd will continue to
append log messages to the files you specify in /etc/syslog.conf.

ki1l -s SIGHUP <PID>

The syslog daemon stores its process ID in the /etc/syslog.pid file so that it may be
used to terminate or reconfigure the daemon. For syslogd to successfully create this
file, you must define the syslogd user ID as UID=0.

Note: If the BPX.SMF facility is defined and SMF records are to be written by
syslogd, the user ID with which syslogd runs must also be permitted to SAF
resource BPX.SMF. See SEZAINST(EZARACF) for more information.

Messages are read from the UNIX domain datagram socket and, unless the -i
command line option is specified, the IPv4 Internet domain (AF_INET) datagram
socket. AF_INET®6 sockets are not supported. Kernel messages are not logged by
syslogd in z/OS UNIX.

Note: For more information about the facilities used by z/OS CS functions, see
[Table 4 on page 40}

Offloading log files

106

z/OS CS includes a syslogd configuration file in /usr/Ipp/tcpip/samples/syslog.conf, a
REXX program for removing old log files in /usr/Ipp/tcpip/samples/rmoldlogs, and a
JCL procedure for starting syslogd in SEZAINST(syslogd). These are intended to be
used together, though each may need to be customized for your installation.

The sample syslogd configuration file is installed in
/usr/Ipp/tcpip/samples/syslog.conf. It can be copied to /etc/syslog.conf after
customization. If it is copied somewhere else, the syslogd -f command-line option
must be used to tell syslogd where to find the configuration file.

z/OS V1R4.0 CS: IP Configuration Guide

The sample REXX program for removing old log files is installed in
/usr/lpp/tcpip/samples/ezasirol. It can be copied to an installation-defined directory
after customization. The sample JCL procedure can be copied to an
installation-defined library after customization.

The sample configuration uses date stamps in the names of directories of log files
to organize log files by year (%Y), month (%m), and day (%d) as follows:

*.err /var/Tog/%Y/%m/%d/errors

Log files for February 14, 2001, for example, would be stored in directory
/var/log/2001/02/14. Variable substitution occurs using the LE C function strftime().
Variables are case sensitive. For more information and a complete list of variables,
refer to|z/0S C/C++ Run-Time Library Reference]

A cron job should be used to send the SIGHUP signal to syslogd every day at
midnight so that it switches to a new set of files. The cron job should be created for
a user ID with UID 0. The definition of the cron job is:

00+ * % kill -HUP “cat /etc/syslog.pid”

The log file names vary based on the day, so sending SIGHUP to syslogd after the
day changes causes syslogd to create new files.

Because some messages sent just after midnight may be logged by syslogd before
it processes the SIGHUP signal, it is possible that a few messages sent after
midnight will be stored in the log files for the previous day.

The sample REXX program can be run daily to remove all log files older than the
number of days specified in the program. Comments in the REXX program describe
how to configure the number of days. The definition of a cron job to run the REXX
program every day at 1:00 A.M. is:

01 * % x localdir/ezaslrol

localdir is the name of the installation-defined directory where the customized
version of /usr/Ipp/tcpip/sample/ezasirol was copied.

Using syslogd for zZ/OS UNIX application programs

You can use the logging facilities of the syslogd server with your z/OS UNIX
application programs. Include the syslog.h header file with C programs so that they
can open a log facility, send log messages to syslogd, and close the facility:

#include <syslog.h>

syslog(LOG_INFO, "Hello from oec");

i§ openlog("oec", LOG_PID, LOG_LOCALO);
2
k] closelog();

Open a log facility with the name of local0. Prefix each line in the log file with
the program name (oec) and the process ID.

H Log an info priority message with the specified content.
Close the log facility name.

The preceding statements created the following line in the log file:
May 26 11:27:51 mvsl18oe 0ec[3014660]: Hello from oec

Chapter 3. Customizaton 107

Usage notes

For more information about the syslog function, refer to Advanced Programming in
the UNIX Environment, published by Addison-Wesley or [z70S C/C++ Run-Timg

[Library Referencd.

» syslogd can be started only by a task or user with superuser authority.

» syslogd can be terminated using the SIGTERM signal.

» If you want syslogd to receive log data from remote syslogd servers, ensure that
syslogd can bind to UDP port 514 by reserving that port for the syslogd job in
your PROFILE.TCPIP data set. Ensure that the syslog service is defined in your
services file or data set (for example, /etc/services). The following example port
reservation in PROFILE.TCPIP assumes that syslogd runs as job syslogd1:

PORT

514 UDP syslogdl ;syslogd daemon

The following example shows the services file or data set file entry:
syslog 514/udp

 If there is no TCP/IP transport active when syslogd starts or if TCP/IP is recycled,
syslogd will establish or reestablish communication with TCP/IP when it becomes
available.

» Configuration file errors are written to the operator console because initialization
is not complete until the entire configuration file has been read.

» Facility mark is not affected by the *.priority usage. Mark messages are written
only to the destinations of rules that specify mark.info.

» If a mark interval of zero minutes is specified, mark messages will be written
every thirty seconds.

Diagnosing syslogd configuration problems

syslogd supports a debug mode, which is selected using the -d command-line
option. In this debug mode, syslogd does not run as a daemon, but instead runs in
the foreground and writes a large number of trace messages to STDOUT. These
messages can be used to diagnose problems in the syslogd configuration or to
collect documentation when reporting a syslogd problem to IBM support.

Note: Do not use the -d option for normal operations.

If you are running syslogd in batch with -d, debug output is written to SYSPRINT,
SYSTERM, or SYSERR, whichever is found first. The sample syslogd procedure
SEZAINST (syslogd) defines SYSPRINT so that debug messages are stored in the
job output.

Use caution using -d when syslogd is started from /etc/rc. If -d is used in this way,
the shell and operator must be used to run syslogd in the background. Otherwise,
/etc/rc does not end and UNIX System Services initialization does not complete.

Also, use caution when using -d along with a port reservation statement for the
syslogd port (UDP port 514) in the TCP/IP profile. The job name of syslogd might
differ based on whether or not the -d option was specified. If a port reservation
statement is coded based on the job name that syslogd uses without the -d option,
syslogd might not be able to bind to the port when run with -d. When using debug

108 2z/0S V1R4.0 CS: IP Configuration Guide

mode with a port reservation statement for the wrong job name, the bind() error can
be ignored or the -i command-line option can be specified along with -d so that
syslogd will not get a UDP socket.

Configuring TCPIP.DATA
Use of TCPIP.DATA and /etc/resolv.conf

The TCPIP.DATA configuration data set is the anchor configuration data set for the
TCP/IP stack and all TCP/IP servers and clients running in z/OS. In z/OS IP, you
can define the TCPIP.DATA parameters in an HFS file or in an MVS data set. The
TCPIP.DATA configuration data set is read during initialization of all TCP/IP server
and client functions. All functions must access this data set in order to find basic
configuration information, such as the name of the TCP/IP address space, the
TCP/IP host name, and the data set prefix to use when searching for other
configuration data sets.

The TCPIP.DATA data set is also known as one of the resolver configuration data
sets. In fact, this name is now more commonly used to refer to this important file in
the UNIX System Services environment because the socket library contains a
component called the resolver. In a UNIX system, you use the /etc/resolv.conf file
for the same purpose as you use TCPIP.DATA in your MVS system.

TCPIP.DATA specifies the name of the TCP/IP address space. Because the data set
search order can vary, your installation will determine which data set you can use.
See [Chapter 1, “Configuration overview” on page 3| for search order, data set, and
file retrieval information and [‘Resolver configuration files” on page 27|

If you use TCPIP.DATA, it can be shared between multiple systems with a system
name. But, if TCPIP.DATA is allocated via SYSTCPD DD and an application forks,
any allocations from the parent of SYSTCPD are lost to the child process.

In z/OS UNIX System Services, each application can have its own environment
variable, RESOLVER_CONFIG="xxx. There are no concerns for forked child
processes; however, this means that you cannot share the same data set or file
among multiple systems.

Creating TCPIP.DATA

Create a TCPIP.DATA file by copying the sample provided in SEZAINST(TCPDATA)
and modifying it to suit your local conditions.

Allocate this data set with either sequential (PS) or partitioned (PO) organization, a
fixed (F) or fixed block format (FB), a logical record length (LRECL) between 80
and 256, and any valid block size for a fixed block. This file can also be the HFS
file /etc/resolv.conf, or an HFS file that is pointed to by either the environment
variable RESOLVER_CONFIG or the SYSTCPD DD in a JCL procedure. If you
have an HFS file, the maximum line length can be 256. The environment variable
RESOLVER_CONFIG can also point to an MVS data set or PDS.

You can use any name for the TCPIP.DATA data set if you access it using the
//ISYSTCPD DD statement, or use ENVAR to set RESOLVER_CONFIG, in the JCL
for all the servers, logon procedures, and batch jobs that execute TCP/IP functions.
If you are not using the //SYSTCPD DD statement, the environment variable, or
/etc/resolv.conf, then the data set name must conform to the conventions described
in [‘Configuration files for the TCP/IP stack” on page 25| Another alternative is to use

Chapter 3. Customization 109

the well-known data set name SYS1.TCPPARMS(TCPDATA). You will issue the
HOMETEST command with TRACE RESOLVER activated to verify the actual data
set name the system finds for TCPIP.DATA later in this chapter. However, because
HOMETEST is an MVS sockets application, it does not use RESOLVER_CONFIG
or /etc/resolv.conf in its search order. For this reason, it is recommended that
/etc/resolv.conf and TCPIP.DATA contain exactly the same information or consider
using the resolver GLOBALTCPIPDATA setup statement.

TCPIP.DATA statements

Each configuration statement can be preceded by an optional system_name. This
permits configuration information for multiple systems to be specified in a single
hlq. TCPIP.DATA data set. The system_name is matched against the name of the
system on which you are running. The name of the system is taken from the name
in the IEFSSNxx member of parmlib, which is the third parameter of the VMCEF line.

The statements are processed in the order they appear in the data set. The
following rules apply to this processing:

» If the system_name does not match the name of the system, the configuration
statement is ignored.

» If system_name is blank, the configuration statement is in effect on every system.

 If the system_name matches the host’'s name, the configuration statement that
follows it is in effect.

¢ The last statement that matches is effective.

For example, if you have the following three TCPIPJOBNAME statements, MVS6
would look for a TCP/IP cataloged procedure named TCPBTA2, MVSA would look
for TCPVS3, and all other systems would look for TCPMCWN.

TCPIPJOBNAME TCPMCUN

MVS6: TCPIPJOBNAME TCPBTA2
MVSA: TCPIPJOBNAME TCPV3

But if you reversed the order, all systems would try to find the procedure named
TCPMCWN.
MVS6: TCPIPJOBNAME TCPBTA2

MVSA: TCPIPJOBNAME TCPV3
TCPIPJOBNAME TCPMCWN

A sample TCPIP.DATA data set (TCPDATA) can be found in SEZAINST. For
detailed information on each of the statements, refer to the [zZ0S Communications
[Server: IP Configuration Reference

Configuring PROFILE.TCPIP

During TCP/IP address space initialization, a configuration profile data set
(PROFILE.TCPIP) is read that contains system operation and configuration
parameters. A sample data set, SEZAINST(SAMPPROF), can be copied and
modified for use as your default configuration profile.

If you are not familiar with the search order for this data set, see ['PROFILE.TCPIP|

earch order” on page 25| for information about understanding data set search
orders. Refer to|zZ0OS Communications Server: IP Configuration Reference for the

complete statement syntax and descriptions of the configuration statements.

For ease of management when configuring a complex environment, you can use
one of the following PROFILE.TCPIP data set features:

110 2/0S V1R4.0 CS: IP Configuration Guide

» Group related statements into separate files and use the INCLUDE statement in
PROFILE.TCPIP to include them in your configuration.

* Use MVS system symbols (such as &SYSCLONE, &SYSNAME, and
&SYSPLEX). Because TCP/IP translates these symbols as it reads this file, this
feature reduces the number of PROFILE.TCPIP data sets that must be
maintained in a multi-TCP/IP environment.

Note: For detailed information about symbols and how to define them, refer to
[z/0S MVS Initialization and Tuning Reference

The PROFILE data set contains the following major groups of configuration
parameters:

» TCP/IP operating characteristics

* TCP/IP physical characteristics

» TCP/IP reserved port number definitions (application configuration)
» TCP/IP network routing definitions

« TCP/IP diagnostic data statements

This chapter discusses the first three areas of configuration. For routing
configuration information, see [Chapter 4, “Routing” on page 155} For information
about configuring diagnostic statements, see|2/0S Communications Server: IR

[Diagnosid

Changing configuration information

If you want to change the TCP/IP configuration without stopping and starting the
TCP/IP address space, you can dynamically change many of the TCP/IP
configuration options established by the PROFILE.TCPIP data set. To do this, put
the changed configuration statements in a separate data set and process it with the
VARY TCPIP,,OBEYFILE command.

For more information about VARY TCPIP, refer to [z/0S Communications Server: IP
[System Administrator's Commands, Also, see the Modifying section in each
configuration statement in|z/0S Communications Server: IP Configuratior]
for a description of how to dynamically change the information for that
configuration statement.

Note: If you attempt to edit PROFILE.TCPIP while TCPIP is active, and
PROFILE.TCPIP is defined in the TCPIP PROC as a sequential data set (for
example, /PROFILE DD DISP=SHR,DSNAME=TCPIP.PROFILE.TCPIP), the
Dataset in use message might be displayed. To avoid this, specify
FREE=CLOSE, as follows:

//PROFILE DD DISP=SHR,DSNAME=TCPIP.PROFILE.TCPIP,FREE=CLOSE

This allows you to edit the profile while TCP/IP is active. Typically, when
TCP/IP starts, it keeps the PROFILE allocated and does not release the
allocation until the end of the step (in this case, the end of the job). If you
specify FREE=CLOSE, the release occurs once the data set is read. MVS
releases the enqueue on the PROFILE, which allows you to edit it.

If the PROFILE is a member of a PDS, [for example,
SYS1.TCPPARMS(PROFILE)], FREE=CLOSE is not needed.

Chapter 3. Customization 111

| Setting up TCP/IP operating characteristics in PROFILE.TCPIP

shows a portion of the sample configuration file for the TCP/IP address
space, PROFILE.TCPIP. This sample can be copied from SEZAINST(SAMPPROF).
includes the portion of the sample that shows how to set up TCP/IP
operating characteristics. Descriptions for the statements follow |Fiqure 26[For more
information about any of these statements, refer to Iz/OS Communications Server]
IP Configuration Reference] For information specific to IPv6 support, refer to |z/O§
Communications Server: IPv6 Network and Application Design Guidel

Figure 26. Example of TCP/IP operating characteristics in PROFILE.TCPIP

5 ARPAGE: Specifies the number of minutes between creation or

5 revalidation of an LCS ARP table entry and the deletion of the
5 entry.

ARPAGE 20

; GLOBALCONFIG: Provides settings for the entire TCP/IP stack
éLOBALCONFIG NOTCPIPSTATISTICS

z IPCONFIG: Provides settings for the IPv4 IP layer of TCP/IP.
; Example IPCONFIG for single stack/single system:
I

PCONFIG DATAGRAMFWD VARSUBNETTING SYSPLEXROUTING
s Example IPCONFIG for automatic activation of inter-stack dynamic XCF
and Same Host (IUTSAMEH) Tlinks

; IPCONFIG DYNAMICXCF 201.1.10.10 255.255.255.0 2
; IPCONFIG6: Provides settings for the IPv6 IP layer of TCP/IP.

s IPCONFIG6 DATAGRAMFWD SOURCEVIPA

; SOMAXCONN: Specifies maximum length for the connection request queue
; created by the socket call Tlisten().

S

OMAXCONN 10

5 TCPCONFIG: Provides settings for the TCP layer of TCP/IP.
R RESTRICTLOWPORTS 1imits access to ports below 1024
to authorized applications. Applications can be
authorized to low ports in three ways:
- via PORT or PORTRANGE with the appropriate jobname
or wildcard jobname
- APF authorized
- superuser

CPCONFIG TCPSENDBFRSIZE 16K TCPRCVBUFRSIZE 16K SENDGARBAGE FALSE
CPCONFIG RESTRICTLOWPORTS

B
B
B
B
B
3
B
B
B
B
5
T
T

RESTRICTLOWPORTS 1imits access to ports below 1024

; UDPCONFIG: Provides settings for the UDP layer of TCP/IP
5 to authorized applications. Applications can be

112 2/0S V1R4.0 CS: IP Configuration Guide

CC we we we we we we

M

authorized to low ports in three ways:
- via PORT or PORTRANGE with the appropriate jobname
or wildcard jobname
- APF authorized
- superuser

DPCONFIG RESTRICTLOWPORTS

The following section explains the grouping of statements shown in|Figure 26 o

page 113

ARPAGE

Use ARPAGE to set the number of minutes between a revalidation and
deletion of ARP table entries for LCS devices. An installation that wants to
describe this value in seconds versus minutes should use the IPCONFIG
ARPTO statement.

Note: The ATM ARP requests are controlled via the ATMLIS statement,
and the MPCIPA and MPCOSA ARP requests are not controlled by
the TCP/IP address space.

GLOBALCONFIG

Use GLOBALCONFIG to print out several counters in text format. These
counters include number of TCP retransmissions and total number of TCP
segments sent from the TCPIP system. Most installations will use the SMF
facility of MVS to collect these counters in a more standard way. Use the
ECSALIMIT parameter on the GLOBALCONFIG statement to limit TCP/IP’s
use of common storage. The POOLLIMIT parameter can be used to limit
TCP/IP’s use of private storage pools.

IPCONFIG

Use IPCONFIG to configure various settings of the IP layer of TCP/IP. Use
ARPTO to specify the ARP time out value in seconds for LCS devices. See
page [113] for more information.

Use CLAWUSEDOUBLENOP on vendor devices that document the need
for double NOPs on each CCW.

Use DATAGRAMFWD if this TCP/IP is to be a router and needs to forward
datagrams to other routers. Use IGNOREREDIRECT when a dynamic
routing program is used and ICMP redirect packets are to be ignored by the
TCP/IP address space. MULTIPATH is used to inform TCP/IP how to
distribute traffic across equal cost routes. VARSUBNETTING allows the
TCP/IP routing table to have address routes within the same subnet that
have differing subnet masks.

Use FIREWALL to restrict this host to be a network firewall. To make IPSEC
tunnels associated with Dynamic VIPA addresses eligible for distribution, if
the VIPA addresses are being distributed and are eligible to be moved
during VIPA takeover or giveback, add the DVIPSEC keyword to
FIREWALL.

SOURCEVIPA enables interface fault tolerance for z/OS clients that
establish outbound connections. When SOURCEVIPA is set, outbound
datagrams use the corresponding virtual IP address (VIPA) in the HOME list
instead of the physical interfaces IP address. SOURCEVIPA has no effect
on RIP servers such as OROUTED, NCPROUTE, or OMPROUTE.

TCPSTACKSOURCEVIPA allows z/OS clients to specify a sysplex wide
source IP address for TCP connections. When TCPSTACKSOURCEVIPA is

Chapter 3. Customizaton 113

set, outbound TCP datagrams use the IP address specified in the
TCPSTACKSOURCEVIPA statement instead of static VIPA addresses or
physical interface addresses.

Use SYSPLEXRouting to communicate interface changes within a sysplex
domain to the workload manager (WLM). DYNAMICXCF allows the cross
communication facility within a sysplex to dynamically generate connections
within a sysplex domain. If DYNAMICXCEF is used with a routing program
like OMPROUTE or OROUTED, then the BSDROUTINGPARMS and the
OMPROUTE configuration files need to be updated with subnet mask and
cost information. For more information on additional configuration
parameters required, see the usage notes related to the DYNAMICXCF
parameter under the IPCONFIG statement in[z/0S Communications Server]
IP Configuration Reference)

Use REASSEMBLYTIMEOUT to specify the TCP/IP reassemble timeout
value in seconds, and the TTL specifies the TCP/IP time to live or hop
count value.

Use PATHMTUDISCOVERY to indicate to TCP/IP that it is to dynamically
discover the path MTU, which is the minimum of MTUs of each hop in the
path.

Use STOPONCLAWERROR to indicate to the TCP/IP stack to stop channel
programs (HALTIO and HALTSIO) when a device error is detected.

IPCONFIG6
Use IPCONFIG6 to update the IP layer of TCP/IP with information that
pertains to IPv6. Use DATAGRAMFWD to enable the transfer of data
between networks.

SOMAXCONN
Use SOMAXCON to specify the maximum number of sockets queued on a
listener.

TCPCONFIG
Use TCPCONFIG to configure various settings of the TCP protocol layer. If
a keep-alive value other than 120 minutes is needed by an installation, use
the INTERVAL statement to change the default keep-alive value.
FINWAIT2TIME can be used to specify a different timeout value for a TCP
Connection which is in a FINWAIT2 state. SENDGARBAGE will cause the
keep-alive packet to contain one byte of random data and an incorrect
sequence number, assuring that the data is not accepted by the remote
TCP. The TCPTIMESTAMP option can be used to choose whether or not to
participate in timestamp negotiation.

The behavior of acknowledgments and delaying their transmission can be
altered by using the DELAYACKS statement.

If RESTRICTLOWPORTS is specified, only applications that meet at least
one of the following criteria are allowed to bind to low ports (1-1023):

» The port is reserved for the application via the PORT or PORTRANGE
statement.

* The application runs with APF authorization.
» The application runs with effective POSIX UID zero.

If an installation wants to control TCP buffering (to limit storage usage or to

manage large bandwidth devices), use the TCPSENDBFRSIZE,
TCPRCVBUFRSIZE, and TCPMAXRCVBUFRSIZE parameters.

114 2/0S V1R4.0 CS: IP Configuration Guide

UDPCONFIG

Use UDPCONFIG to configure various settings of the UDP protocol layer.
NOUDPCHKSUM can be used to eliminate check summing overhead for
IPv4 UDP packets. This option is ignored for UDP datagrams flowing over
an IPv6 network, as UDP Checksum is a required function on an IPv6
network.

If RESTRICTLOWPORTS is specified, only applications that meet at least
one of the following criteria are allowed to bind to low ports (1-1023):

* The port is reserved for the application via the PORT or PORTRANGE
statement.

« The application runs with APF authorization.
* The application runs with effective POSIX UID zero.

If an installation wants to control UDP buffering (to limit storage usage or to
manage large bandwidth devices), use the UDPSENDBFRSIZE and
UDPRCVBUFRSIZE parameters. UDPQUEUELIMIT can be used to set a
queue limit for UDP. This is useful for installations that want to limit the size
of the queue of UDP datagrams that an application can have waiting before
the TCP/IP address space starts discarding them.

Setting up physical characteristics in PROFILE.TCPIP

shows the sample configuration file for the TCP/IP address space,
PROFILE.TCPIP. This sample can be copied from SEZAINST(SAMPPROF).
Following [Figure 27} several of the statements that are used to set up physical
characteristics in PROFILE.TCPIP are described. For more information about any of
these statements, or information on statements not described, refer to

[Communications Server: IP Configuration Reference] For information specific to

IPv6 support, refer to |z70S Communications Server: IPv6 Network and Applicatior]

Figure 27. Example of physical characteristics in PROFILE.TCPIP

This is a sample configuration file for the TCPIP address space
SMP/E name: EZAEB025, alias SAMPPROF in target library SEZAINST

COPYRIGHT = NONE

- The device configuration, home and routing statements MUST be
changed to match your hardware and software configuration.
Likewise, the BEGINVTAM section MUST be changed to match your
VTAM configuration.

- Lines beginning with semi-colons are comments. To use a line
for your configuration, remove the semi-colon.

- For more information about this file, see the IP Configuration Guide

ARPAGE: Specifies the number of minutes between creation or
revalidation of an LCS ARP table entry and the deletion of the
entry.

Chapter 3. Customizaton 115

ARPAGE 20

; GLOBALCONFIG: Provides settings for the entire TCP/IP stack
GLOBALCONFIG NOTCPIPSTATISTICS

; IPCONFIG: Provides settings for the IPv4 IP layer of TCP/IP.

; Example IPCONFIG for single stack/single system:
IPCONFIG DATAGRAMFWD VARSUBNETTING SYSPLEXROUTING

Example IPCONFIG for automatic activation of inter-stack dynamic XCF
and Same Host (IUTSAMEH) Tinks

IPCONFIG DYNAMICXCF 201.1.10.10 255.255.255.0 2

IPCONFIG6: Provides settings for the IPv6 IP layer of TCP/IP.

SOMAXCONN: Specifies maximum length for the connection request queue
created by the socket call Tisten().

; IPCONFIG6 DATAGRAMFWD SOURCEVIPA
S

OMAXCONN 10

; TCPCONFIG: Provides settings for the TCP layer of TCP/IP.

5 RESTRICTLOWPORTS Timits access to ports below 1024

; to authorized applications. Applications can be

; authorized to Tow ports in three ways:

H - via PORT or PORTRANGE with the appropriate jobname
; or wildcard jobname

; - APF authorized

H - superuser

TCPCONFIG TCPSENDBFRSIZE 16K TCPRCVBUFRSIZE 16K SENDGARBAGE FALSE
TCPCONFIG RESTRICTLOWPORTS

; UDPCONFIG: Provides settings for the UDP layer of TCP/IP

; RESTRICTLOWPORTS 1imits access to ports below 1024

H to authorized applications. Applications can be

; authorized to Tow ports in three ways:

H - via PORT or PORTRANGE with the appropriate jobname
; or wildcard jobname

; - APF authorized

H - superuser

UDPCONFIG RESTRICTLOWPORTS

; DEVICE: Defines name (and sometimes device number) for various types
3 of network devices for IPv4 only

; LINK: Defines a network interface to be associated with a particular
; device. For IPv4 only.

; INTERFACE: Defines an IPv6 interface.

5 DEVICE and LINK for CTC devices

;DEVICE CTC1 CTC DOO AUTORESTART
3 LINK CTCboO CTC 0 CTC1

3 DEVICE and LINK for HYPERchannel A220 devices:

;DEVICE HCH1 HCH EOO AUTORESTART
3 LINK HCHEOO HCH 1 HCH1

; DEVICE and LINK for LAN Channel Station and OSA devices:

116 2/0S V1R4.0 CS: IP Configuration Guide

DEVICE: Defines name and hexadecimal device number for an IBM 8232
LAN channel station (LCS) device, and IBM 3172 Interconnect
Controller, an IBM 2216 Multiaccess Connector Model 400,
an IBM FDDI, Ethernet, or Token Ring OSA, or an IBM ATM 0SA-2
in LAN emulation mode

LINK: Defines a network interface Tink associated with an LCS
device; may be for Ethernet Network, Token-Ring Network or
PC Network, or FDDI.

Example: LCS1 is a 3172 model 1 with a Token Ring and Ethernet
adapter

;DEVICE LCS1 LCS BAG® AUTORESTART
3 LINK TR1 IBMTR © LCS1
;LINK ETH1 ETHERNET 1 LCS1

; Example: LCS2 is a 3172 model 2 with a FDDI adapter

;DEVICE LCS2 LCS BEO AUTORESTART
s LINK FDDI1 FDDI 0O LCS2

DEVICE and LINK for MPCIPA QDIO Devices:

Example: MPCIPAL is either an IBM 0SA-Express Gigabit Ethernet
or QDIO Fast Ethernet adapter

;sDEVICE MPCIPA1 MPCIPA NONROUTER AUTORESTART

s LINK MPCIPALINK1 IPAQENET MPCIPAL

H Example: MPCIPA2 is either an IBM OSA-Express Gigabit Ethernet

H or QDIO Fast Ethernet adapter, configured as the PRIMARY router

;DEVICE MPCIPA2 MPCIPA PRIROUTER AUTORESTART
;LINK MPCIPALINK2 IPAQENET MPCIPA2

; DEVICE and LINK for MPCPTP devices:

;DEVICE MPCPTP1 MPCPTP ~ AUTORESTART
3 LINK MPCPTPLINK MPCPTP MPCPTP1

5 DEVICE and LINK for CLAW devices:

;DEVICE RS6K CLAW 6B2 HOST PSCA NONE 26 26 AUTORESTART
3 LINK IPLINKLI IP O RS6K

; DEVICE and LINK for SNA LUO Tinks:

;DEVICE SNALUO SNAIUCV ~ SNALINK LUOGOOOOO SNALINK AUTORESTART
s LINK SNA1 SAMEHOST 1 SNALUO

s

; DEVICE and LINK for SNA LU 6.2 Tinks:

;DEVICE SNALU621 SNALU62 SNAPROC AUTORESTART
s LINK SNA2 SAMEHOST 1 SNALU621

; DEVICE and LINK for X.25 NPSI connections:

;DEVICE X25DEV X25NPSI TCPIPX25 AUTORESTART
s LINK X25LINK SAMEHOST 1 X25DEV

; DEVICE and LINK for 3745/46 Channel DLC Devices:

;DEVICE CDLC1 CDLC COO AUTORESTART
s LINK CDLCLINK CDLC 1 CDLC1

H DEVICE and LINK for MPC OSA Fast Ethernet Devices:

;DEVICE MENET1 MPCOSA AUTORESTART
s LINK ENETLINK OSAENET © MENET1

H DEVICE and LINK for MPC OSA FDDI Devices:

;DEVICE MFDDI1 MPCOSA AUTORESTART
3 LINK FDDILINK OSAFDDI O MFDDI1

Chapter 3. Customization

117

Virtual device definitions

DEVICE and LINK for Virtual Devices (VIPA):

DEVICE VDEV1 VIRTUAL 0
LINK VLINK1 VIRTUAL 0O VDEV1

Dynamic Virtual Devices can be defined on this system. This system
can serve as backup for Dynamic Virtual Devices on other systems.

A predefined range will allow Dynamic Virtual Devices to be defined
by IOCTL or Bind requests.

VIPADYNAMIC
Define two dynamic VIPAs on this stack:
VIPADEFINE 255.255.255.192 201.2.10.11 201.2.10.12

Define this stack as backup for these dynamic VIPAs on
other TCP/IP stacks:

VIPABACKUP 100 201.2.10.13 201.2.10.14
VIPABACKUP 80 201.2.10.21 201.2.10.22
VIPABACKUP 60 201.2.10.31 201.2.10.33
VIPABACKUP 40 201.2.10.32 201.2.10.34

VIPARANGE DEFINE 255.255.255.192 201.2.10.192
ENDVIPADYNAMIC

ATMLIS: Describes characteristics of an ATM logical IP subnet (LIS).
DEVICE and LINK for ATM devices: (See below)

ATMPVC: Describes a permanent virtual circuit (PVC) to be used by an
ATM Tink.

ATMARPSV: Designates the ATMARP server that will resolve ATMARP
requests for a logical IP subnet (LIS).

ATMLIS LISl 9.67.100.0 255.255.255.0
DEVICE O0SA1 ATM PORTNAME PORT1
LINK LINK1 ATM O0SA1 LIS LIS1
ATMPVC ~ PVC1 LINK1

ATMARPSV ARPSV1 LIS1 PVC PVC1

Virtual interface definitions
IPADDR keyword is required for Virtual interfaces
Multiple IP addresses can be defined to one interface
The prefixes of the IPv6 VIPA addresses should be
different than the prefixes used for addresses
configured or autoconfigured for real interfaces.
INTERFACE VIPAV6 DEFINE
VIRTUALG6
IPADDR FECO:0:0:A:9:67:115:66 ; (Site-Local Address)
50C9:C2D4:0:A:9:67:115:66 ; (Global Address)
To use autoconfiguration, the IPADDR cannot be specified.
To manally define address(es), use the IPADDR keyword.
To assign a VIPA address for an interface, use SOURCEVIPAINT
To have IPv4 and IPv6 share a physical device, define IPv4
using DEVICE/LINK/HOME and IPv6 using INTERFACE
INTERFACE 0SAQDI026 ; OSA QDIO (Fast Ethernet)
DEFINE IPAQENET6
PORTNAME 0SAQDIO2
SOURCEVIPAINT VIPAV6
IPADDR FEC0:0:0:1:9:67:115:66 5 (Site-Local Address)
50C9:C2D4:0:1:9:67:115:66 ; (Global Address)

118 2/0S V1R4.0 CS: IP Configuration Guide

To define other Ipv6 Loopback addresses:

TRANSLATE: Indicates a relationship between an internet address and
the network address on a specified link. Only applicable for IPv4
devices.

TRANSLATE
9.67.43.110 FDDI FFO000006702 FDDI1
9.37.84.49 HCH FFOO00005555 HCHEOO

HOME: Provides the 1ist of home IP addresses and associated Tink names
for IPv4

- The LOOPBACK statement of 14.0.0.0 should only be used if the
installation has applications that require this old Toopback
address. The current stack uses 127.0.0.1 as the Toopback

address.
HOME
14.0.0.0 LOOPBACK
130.50.75.1 TR1
193.5.2.1 ETH1
9.67.43.110 FDDI1
193.7.2.1 SNA1

9.67.113.80 CTCDOO
.37.84.49 HCHEOO
.67.113.81 MPCIPALINK1
.67.113.82 MPCPTPLINK
.67.113.83 MPCIPALINKZ
.67.114.02 IPLINK1
.67.43.03 SNA2
.67.115.85 X25LINK
.67.116.86 VLINK1
.67.117.87 CDLCLINK
.67.100.80 LINK1
.37.112.13 ENETLINK
.37.112.14 FDDILINK

O W W W WWWWWWWO

PRIMARYINTERFACE: Specifies which Tink is designated as the default
Tocal host for use by the GETHOSTID() function. Only applicable
for IPv4 devices.

- If PRIMARYINTERFACE is not specified, then the first Tink in
the HOME statement is the primary interface, as usual.

PRIMARYINTERFACE TR1

BEGINRoutes: Defines static routes to the IP route table for IPv4
and IPv6

EGINRoutes
Direct Routes - Routes that are directly connected to my interfaces.
Destination Subnet Mask First Hop Link Name Packet Size

ROUTE 130.50.75.0 255.255.255.0 = TR1 MTU 2000

Chapter 3. Customization

119

;ROUTE 193.5.2.0/24 = ETH1 MTU 1500
;ROUTE 9.67.43.0 255.255.255.0 = FDDI1 MTU 4000
= SNA1 MTU 2000

;ROUTE 193.7.2.2 HOST

Destination Subnet Mask First Hop Interface Packet Size

ROUTE FE80::1:2:3:4/128 = 0SAQDIO26 MTU 2000
ROUTE FECO::1/128 = 0SAQDIO026 MTU 2000

Indirect Routes - Routes that are reachable through routers on my
network.

Destination Subnet Mask First Hop Link Name Packet Size

;ROUTE 193.12.2.0 255.255.255.0 130.50.75.10 TR1 MTU 2000
;ROUTE 10.5.6.4 HOST 193.5.2.10 ETH1 MTU 1500

Destination Subnet Mask First Hop Interface Packet Size
ROUTE FEC8::/64 FE80::1:2:3:4 0SAQDIO26 ~ MTU 2000

Default Route - A1l packets to an unknown destination are routed
through this route.

Destination First Hop Link Name Packet Size
;ROUTE DEFAULT 9.67.43.99 FDDI1 MTU DEFAULTSIZE
; Destination Subnet Mask First Hop Interface Packet Size
; ROUTE DEFAULT6 FE8@::1:2:3:4 0SAQDIO26 MTU DEFAULTSIZE
ENDRoutes

Dynamic routing
Only support for IPv4 at this time.

BSDROUTINGPARMS: Defines the characteristics of each Tink defined at
the host over which OROUTED will send routing information to
adjacent routers running the RIP protocl and which NCPROUTE will
send transport PDUs to client NCPs.

- OMPROUTE is the recommended routing daemon. It does not use
BSDROUTINGPARMS.

- OROUTED users must define BSDROUTINGPARMS.

- Use of the BEGINROUTES statement (static routes) with the
OMPROUTE or OROUTED routing daemons is not recommended.

BSDROUTINGPARMS TRUE
Link name MTU Cost metric Subnet Mask Dest address

;0 TR1 2000

0 255.255.255.0 0
ETH1 1500 0 255.255.255.0 0
FDDI1 4000 0 255.255.255.0 0
VLINK1 DEFAULTSIZE 0 255.255.255.0 0
CTCDOO 65527 0 255.255.255.0 9.67.113.90
ENDBSDROUTINGPARMS

AUTOLOG: Supplies TCPIP with the procedure names to start and the
time value to wait at TCP start up for any of those procedures
to terminate if they are active.

AUTOLOG 5

FTPD JOBNAME FTPD1 3 FTP Server

LPSERVE 3 LPD Server

NAMED ; Domain Name Server
NCPROUT s NCPROUTE Server

120 2z/0S V1R4.0 CS: IP Configuration Guide

OROUTED
OSNMPD
PORTMAP
PORTMAP JOBNAME PORTMAP1
RXSERVE
SMTP
SNMPQE
; TCPIPX25
; ENDAUTOLOG

OROUTED Server

SNMP Agent Server

Portmap Server (SUN 3.9)

USS Portmap Server (SUN 4.0)
Remote Execution Server
SMTP Server

SNMP Client

X25 Server

; PORT: Reserves a port for specified job names

- A port that is not reserved in this 1ist can be used by any user.
If you have TCP/IP hosts in your network that reserve ports
in the range 1-1023 for privileged applications, you should
reserve them here to prevent users from using them.
The RESTRICTLOWPORTS option on TCPCONFIG and UDPCONFIG will also
prevent unauthorized applications from accessing unreserved
ports in the 1-1023 range.

- A PORT statement with the optional keyword SAF followed by a
1-8 character name can be used to reserve a PORT and control
access to the PORT with a security product such as RACF.

For port access control, the full resource name for the security
product authorization check is constructed as follows:
EZB.PORTACCESS.sysname.tcpname.safname
where:
EZB.PORTACCESS 1is a constant
sysname is the MVS system name (substitute your sysname)
tcpname is the TCPIP jobname (substitute your jobname)
safname is the 1-8 character name following the SAF keyword

5 When PORT access control is used, the TCP/IP application

H requiring access to the reserved PORT must be running under a
; USERID that is authorized to the resource. The resources

; are defined in the SERVAUTH class.

H For an example of how the SAF keyword can be used to enhance

; security, see the definition below for the FTP data PORT 20

H with the SAF keyword. This definition reserves TCP PORT 20 for
; any jobname (the *) but requires that the FTP user be permitted
H by the security product to the resource:

; EZB.PORTACCESS.sysname.tcpname.FTPDATA in the SERVAUTH class.
P

- The BIND keyword is used to force a generic server (one that
binds to INADDR_ANY) to bind to the specific IP address that
is specified following the BIND keyword. This capability could
be used, for example, to allow z/0S UNIX telnet and telnet
3270 servers to both bind to TCP port 23.

The IP address that follows bind must be in IPv4 dotted
decimal format and may be any valid address for the host
including VIPA and dynamic VIPA addresses.

The special jobname of OMVS indicates that the PORT is reserved
for any application with the exception of those that use the Pascal
API.

The special jobname of * indicates that the PORT is reserved
for any application, including Pascal API socket applications.

The special jobname of RESERVED indicates that the PORT is
bTocked. It will not be available to any application.

The special jobname of INTCLIEN indicates that the PORT is
reserved for internal stack use.

ORT

7 UDP MISCSERV s Miscellaneous Server - echo

7 TCP MISCSERV 5 Miscellaneous Server - echo

9 UDP MISCSERV s Miscellaneous Server - discard
9 TCP MISCSERV s Miscellaneous Server - discard
19 UDP MISCSERV s Miscellaneous Server - chargen
19 TCP MISCSERV ; Miscellaneous Server - chargen
20 TCP = NOAUTOLOG s FTP Server

Chapter 3. Customization 121

;20 TCP = NOAUTOLOG SAF FTPDATA ; FTP Server

21 TCP FTPD1 s FTP Server

;21 TCP FTPD2 BIND FEC9:C2D4:1:0000:0009:0067:0115:0066 ; FTP IPv6
23 TCP INTCLIEN ; Telnet 3270 Server

;23 TCP INETD1 BIND 9.67.113.3 ; z/0S UNIX Telnet server
25 TCP SMTP SMTP Server

53 TCP NAMED
53 UDP NAMED
111 TCP PORTMAP
111 UDP PORTMAP
;111 TCP PORTMAP1
; 111 UDP PORTMAP1
123 UDP SNTPD
135 UDP LLBD
161 UDP OSNMPD
162 UDP SNMPQE
389 TCP LDAPSRV
443 TCP HTTPS
443 UDP HTTPS
512 TCP RXSERVE
514 TCP RXSERVE
; 512 TCP = SAF OREXECD
; 514 TCP = SAF ORSHELLD
515 TCP LPSERVE
520 UDP OROUTED
580 UDP NCPROUT
750 TCP MVSKERB
750 UDP MVSKERB
751 TCP ADM@SRV
751 UDP ADM@SRV
1933 TCP ILMTSRVR
1934 TCP ILMTSRVR
3000 TCP CICSTCP
3389 TCP MSYSLDAP

Domain Name Server

Domain Name Server

Portmap Server (SUN 3.9)
Portmap Server (SUN 3.9)

Unix Portmap Server (SUN 4.0)
Unix Portmap Server (SUN 4.0)
Simple Network Time Protocol Server
NCS Location Broker

SNMP Agent

SNMP Query Engine

LDAP Server

http protocol over TLS/SSL
http protocol over TLS/SSL
Remote Execution Server
Remote Execution Server

z/0S UNIX Remote Execution Server
z/0S UNIX Remote Shell Server
LPD Server

OROUTED Server

NCPROUTE Server

Kerberos

Kerberos

Kerberos Admin Server
Kerberos Admin Server

IBM LM MT Agent

IBM LM Appl Agent

CICS Socket

LDAP Server for Msys

Ge e Be We e e Be We e e Be We e e Be We We e Be Ve We e Be We e e Be we e

PORTRANGE: Reserves a range of ports for specified jobnames.

In a common INET (CINET) environment, the port range indicated by
the INADDRANYPORT and INADDRANYCOUNT in your BPXPRMxx parmlib member
should be reserved for OMVS.

The special jobname of OMVS indicates that the PORTRANGE is reserved
for ANY z/0S UNIX socket application.

The special jobname of * indicates that the PORTRANGE is reserved
for any socket application, including Pascal API socket
applications.

The special jobname of RESERVED indicates that the PORTRANGE is
blocked. It will not be available to any application.

The SAF keyword is used to restrict access to the PORTRANGE to
authorized users. See the use of SAF on the PORT statement above.

PORTRANGE 4000 1000 TCP OMVS
PORTRANGE 4000 1000 UDP OMVS
PORTRANGE 2000 3000 TCP RESERVED
PORTRANGE 5000 6000 TCP = SAF RANGE1

SACONFIG: Configures the TCP/IP SNMP subagent

ACONFIG ENABLED COMMUNITY public AGENT 161

; Configure Telnet

; TELNETPARMS: Configure the Telnet Server
; - TN3270(E) server port 23 options
=

elnetParms
Port 23 ; Port number 23 (std.)

122 2/0S V1R4.0 CS: IP Configuration Guide

TELNETDEVICE 3278-3-E NSX32703 ; 32 line screen -

; default of NSX32702 is 24
TELNETDEVICE 3279-3-E NSX32703 ; 32 line screen -

; default of NSX32702 is 24
TELNETDEVICE 3278-4-E NSX32704 ; 48 line screen -

; default of NSX32702 is 24
TELNETDEVICE 3279-4-E NSX32704 ; 48 line screen -

s default of NSX32702 is 24
TELNETDEVICE 3278-5-E NSX32705 ; 132 column screen-

5 default of NSX32702 is 80
TELNETDEVICE 3279-5-E NSX32705 ; 132 column screen -

; default of NSX32702 is 80
LUSESSIONPEND 5 On termination of a Telnet server connection,
the user will revert to the DEFAULTAPPL
instead of having the connection dropped

we

e

MSGO7 Sends a USS error message to the client if an
5 error occurs during session establishment
; instead of dropping the connection

CodePage I1S08859-1 IBM-1047 ; Linemode ASCII, EBCDIC code pages

Inactive 0 ; Let connections stay around

PrtInactive 0 ; Let connections stay around

TimeMark 600

ScanInterval 120

SMFinit std

SMFterm std

WLMCTlusterName

TN3270E

EndWLMCTusterName

; Define Togon mode tables to be the defaults shipped with the

; latest level of VTAM

we

EndTelnetParms

B

s

TelnetParms
Secureport 992 Keyring HFS /tmp/telnet.kdb
EndTelnetParms

BEGINVTAM: Defines the VTAM parameters required for the Telnet server.

eginVTAM

Port 23 ; 992
; Define the LUs to be used for general users.
DEFAULTLUS
TCPABCO1..TCPABC99..FFFFFFNN
ENDDEFAULTLUS
DEFAULTAPPL TSO ; Set the default application for all TN3270(E)
; Telnet sessions to TSO

LINEMODEAPPL TSO ; Send all Tine-mode terminals directly to TSO.
ALLOWAPPL SAMON QSESSION ; SAMON appl does CLSDST Pass to next appl

ALLOWAPPL TSO* DISCONNECTABLE ; Allow all users access to TSO
5 applications.
5 TSO is multiple applications all beginning with TSO,
5 so use the * to get them all. If a session is closed,
5 disconnect the user rather than log off the user.

ALLOWAPPL = 5 Allow all applications that have not been
previously specified to be accessed.

RESTRICTAPPL IMS
USER USER1

5 Only 3 users can use IMS.
5 Allow userl access.
LU TCPIMSO1 ; Assign USER1 LU TCPIMSOL.
USER USER2 ; Allow user2 access from the default LU pool.
USER USER3 ; Allow user3 access from 3 Telnet sessions,
; each with a different reserved LU.

LU TCPIMS31 LU TCPIMS32 LU TCPIMS33
;5 Map Telnet sessions from IP address 130.50.10.1 to display the
; USSMSG10 screen from USS table USSAPC.

USSTCP USSAPC 130.50.10.1

; Map Telnet sessions from the SNAL Tink to display the USSMSG10

Chapter 3. Customization

123

En

N

>
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
>
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
>

5 screen from USS table USSCBA.
USSTCP USSCBA SNA1

LUGROUP LUGRP1
TCPMOOO1..TCPMO999
TCPM1001

ENDLUGROUP

LUGROUP LUGRP2
TCPM2001 TCPM2003 TCPM2004
TCPMOAAA. .TCPMOZZZ
ENDLUGROUP

; Define groups of host names
HNGROUP HNGRP1
TEST1.TCP.RALEIGH.IBM.COM
TEST2.TCP.RALEIGH.IBM.COM
*.% RALEIGH.IBM.COM
ENDHNGROUP

HNGROUP HNGRPALL
*%,COM
ENDHNGROUP

; Map LUs to groups for host names

; LUMAP LUGRP1 HNGRP1
; LUMAP LUGRP2 HNGRPALL

LUMAP TCPM5000 SPECIAL.TCP.RALEIGH.IBM.COM
dVTAM

Configure Network Access Control
Network access contol can be used to restrict the destinations
that TCP/IP users are allowed to communicate with.

The NETACCESS group contains optional flags that control whether
checking is done on inbound paths (accept and all read variants)
and outbound paths (connect and all write variants). If no flags
are specified, checking is only performed on outbound paths.
NOINBOUND and NOOUTBOUND disable checking in that direction.

The NETACCESS group also contains a 1ist of IP addresses

that may be subnetworks or specific hosts. The subnetwork mask
can be specified as a number of significant bits or in dotted
decimal notation. The mask must be contiguous bits.

The special IP address DEFAULT with a mask of O includes all
IPv4 addresses not otherwise specified.

A 1-8 character name follows the IP address and subnet mask and
is used as the right-most qualifier in the security product
resource name.

For network access control, the full resource name for the
security product authorization check is constructed as follows:

EZB.NETACCESS.sysname.tcpname.resname

where:
EZB.NETACCESS is a constant
sysname is the MVS system name (substitute your sysname)
tcpname is the TCPIP jobname (substitute your jobname)
resname is the 1-8 character name following the subnet mask.

When network access control is used, the TCP/IP application
requiring access to the restricted subnet or host must be running
under a USERID that is authorized to the resource. The resources
are defined in the SERVAUTH class. See the EZARACF sample for
examples of the RACF definitions.

ETACCESS INBOUND OUTBOUND s check both ways
192.168.0.0/16 CORPNET ; Net address
192.168.113.19/32 HOST1 ; Specific host address

192.168.113.0 255.255.255.0 SUBNET1 ; Subnet address

124 2/0S V1R4.0 CS: IP Configuration Guide

192.168.112.0 255.255.248.0 SUBNET2

192.168.192.0/24 CAMPUS

192.168.214.0/24 CAMPUS

DEFAULT 0 DEFZONE
ENDNETACCESS

Subnet address
Subnet address
Subnet address
Optional Default zone

- For optimum performance, use of tracing should be Timited to when
required for problem analysis.

ITRACE: Controls TCP/IP run-time tracing

ITRACE ON CONFIG 1
ITRACE OFF SUBAGENT

PKTTRACE: Controls the packet trace facility in TCP/IP.

PKTTRACE ABBREV=200 LINKNAME=TR1 PROT=ICMP IP=*
SRCPORT=5000 DESTPORT=161

SMFCONFIG: Provides SMF logging for Telnet, FTP, TCP API and TCP
stack activity.

- The SMF record types for TCP/IP records are 118 and 119.

For Type 118 records specify:

For Type 119 records specify:

SMFCONFIG
TYPE119 TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS
IFSTATISTICS PORTSTATISTICS TCPSTACK UDPTERM

For all Type 118 and Type 119 records specify:

SMFCONFIG TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS
TYPE119 TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS
IFSTATISTICS PORTSTATISTICS TCPSTACK UDPTERM

SMFPARMS: Logs the use of TCP by applications using SMF log records.
However, use of the SMFCONFIG statement is recommended instead.

DELETE: Removes an ATMARPSV, ATMLIS, ATMPVC, device, link, port or
portrange. This statement is typically done via an obey file, not
in an initial profile.

STOP: Stops a device. If used, this statement is typically put in
an obey file, not in an initial profile.

INCLUDE: Causes another data set that contains profile configuration
statements to be included at this point.

5 SMFCONFIG TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS
; START: Starts a device or interface that is currently stopped.
;START LCS1

;START LCS2
3 START 0SAQDI026

Chapter 3. Customization

125

126

The following section explains several of the statements shown in
that are used to set up physical characteristics in PROFILE.TCPIP. For
more information about any of these statements, or information on statements not
described here, see [zZ0S Communications Server: IP Configuration Referencd. For
information specific to IPv6 support, refer to [z270S Communications Server: IPv§
INetwork and Application Design Guide,

DEVICE and LINK
Use DEVICE and LINK statements to define each IPv4 network interface to
the TCPIP address space. Refer to the [zZ0S Communications Server: IH
[Configuration Reference for more details about the various network
interfaces supported by TCP/IP.

ATM Use the ATM DEVICE and LINK statements to define connectivity to
an ATM network. These statements allow for connectivity in either
ATM native mode over an ATM virtual circuit (VC) or in ATM LAN
Emulation mode.

For ATM native mode, the VC can be either a permanent virtual
circuit (PVC) or a switched virtual circuit (SVC). To define a PVC,
use the ATMPVC statement. To define SVCs, use the ATMLIS
statement to define the ATM logical IP subnet (LIS). Also, for SVCs,
use the ATMARPSYV statement to define the ATMARP server that
will resolve ATMARP requests within the LIS. For ATM LAN
emulation mode, the ATM DEVICE and LINK definitions allow you
to retrieve SNMP network management data for the device. In this
mode, you need to define the device as an LCS.

CDLC The DEVICE CDLC describes the interface between the TCP/IP
address space and the 3745/46 devices used.

CLAW Use CLAW DEVICE for RISC System/6000® and SP2°.

CTC Use the CTC DEVICE and LINK statements to define connectivity
to another z/OS using channel-to-channel.

HYPERchannel A220 DEVICE and LINK
Use the HCH DEVICE and LINK statements to define connectivity
via the HYPERchannel A220 adapter.

LAN Channel Station (LCS) DEVICE and LINK
Use the LCS DEVICE and LINK statements to define connectivity to
a token-ring, FDDI, or Ethernet LAN. LCS devices can have more
than one adapter. Therefore, you can have more than one LINK
statement for an LCS DEVICE statement.

In configurations where multiple LCS and/or MPCIPA links onto the
same LAN are defined, if the interface targeted by the ARP Request
is inactive, one of the other active interfaces on the LAN will
automatically take over responsibility for answering ARPs on behalf
of the inactive interface. In this way, fault tolerance is achievable on
the LAN without requiring a dynamic routing protocol.

TCP/IP supports ARP for VIPAs. In a flat network (one in which
traffic flows directly between two endpoints without an intermediate
router) using static routing with multiple interfaces onto the same
LAN, you can achieve fault tolerance by defining a VIPA in the
same subnet as the physical interfaces on the LAN. If a static route
specifies a VIPA as the next hop IP address, the host or router will
send an ARP for the VIPA. TCP/IP will reply to the ARP with the
MAC address of one of the active physical interfaces on that LAN.

z/OS V1R4.0 CS: IP Configuration Guide

MPCOSA
The MPCOSA DEVICE statements define the MPC OSA Ethernet
and FDDI devices.

MPCIPA
Use the MPCIPA DEVICE and LINK statements to define LAN
connectivity via OSA-Express using the Queued Direct 1/0 (QDIO)
interface. The MPCIPA device name must be the PORT name of
the TRLE definition of the QDIO interface as described in|z/O§
[Communications Server: SNA Resource Definition Reference]
Device specifications for the type of IP routing supported are also
specified on the MPCIPA DEVICE statement. These are also
described in [z70S Communications Server: SNA Resource|
[Definition Reference

In configurations where multiple LCS and/or MPCIPA links onto the
same LAN are defined, if the interface targeted by the ARP Request
is inactive, one of the other active interfaces on the LAN will
automatically take over responsibility for answering ARPs on behalf
of the inactive interface. In this way, fault tolerance is achievable on
the LAN without requiring a dynamic routing protocol.

TCP/IP supports ARP for VIPAs. In a flat network (one in which
traffic flows directly between two endpoints without an intermediate
router) using static routing with multiple interfaces onto the same
LAN, you can achieve fault tolerance by defining a VIPA in the
same subnet as the physical interfaces on the LAN. If a static route
specifies a VIPA as the next hop IP address, the host or router will
send an ARP for the VIPA. TCP/IP will reply to the ARP with the
MAC address of one of the active physical interfaces on that LAN.

MPCPTP

MPCPTP can be used to define any of the following:

* A connection to another host over a series of CTCs (in this case,
the device name must be the name of a VTAM TRLE).

* An XCF connection to another TCP/IP in the same z/OS sysplex.
For an XCF connection, the device name must be the cp name
of the target VTAM on the other side of the XCF connection, and
the VTAM ISTLSXCF major node must be active to start the
device.

* An IUTSAMEH connection (with no need for any I/O devices) to
another TCP/IP on the same z/OS system or to VTAM for
Enterprise Extender. For an IUTSAMEH connection, the device
name must be the reserved name IUTSAMEH. VTAM
automatically activates the IUTSAMEH TRLE.

Use the IPCONFIG DYNAMICXCF statement to cause TCP/IP to
automatically define and activate XCF connectivity between each
pair of TCP/IP stacks in the same sysplex and IUTSAMEH
connectivity between multiple TCP/IP stacks on the same z/OS.

SNAIUCV and SNALU62
Use SNAIUCV DEVICE to specify the interface to use for SNA LUO
traffic to the SNALINK started procedures. For example, use this to
define the interface between the TCP/IP address space and the
SNALINK address space that is using a 3745 running NCPRoute.
Similarly, the DEVICE SNALUB62 statement defines the interface

Chapter 3. Customization 127

between the TCP/IP address space and the address space using
SNA LU6.2. Refer to|z/OS Communications Server: |
[Configuration Referencd for information about how to define

multiple LU6.2 connections within the same TCP/IP address space.

X.25 The DEVICE X25DEV defines the interface between the TCP/IP
address space and the address space of the X.25 NPSI server.

VIPA and VIPADYNAMIC
Virtual IP Addresses (VIPA) are used to define virtual devices to the
TCP/IP address space. There are two types of VIPAs:

« Static
* Dynamic

The static virtual device requires DEVICE and LINK statements to
define a device that is always started, can never be stopped, can
be known within the network, yet requires no physical adapters. It is
very useful to define VIPAs so that if a physical adapter loses its
connection to the network, application traffic using the failed
physical adapter can be rerouted over another interface to the
network. To the network, the VIPA address appears to be one hop
away from the TCP/IP address spaces. The network sends and
receives datagrams to and from the physical interfaces to get to the
VIPA address. For more information about VIPA, see

[“Virtual IP Addressing” on page 209|

INTERFACE
Use INTERFACE statements to define each IPv6 network interface to the
TCPIP address space. Refer to the [z2Z0S Communications Server: I
[Configuration Reference for more details about the various network
interfaces supported by TCP/IP.

IPAQENET6
Use the IPAQENET6 INTERFACE statement to define IPv6 LAN
connectivity through OSA-Express using QDIO.

VIRTUALG
Use the VIRTUALG6 INTERFACE statement to define IPv6 static
VIPAs.

HOME HOME lists the IP addresses and their associated LINK adapter. The first
HOME statement within a configuration data set replaces the existing
HOME list. If subsequent HOME statements are found within a
configuration data set, add entries to the list.

Note: The order of the HOME list is important if IPCONFIG SOURCEVIPA
is specified, except for TCP datagram requests with
TCPSTACKSOURCEVIPA specified. The source address used will
be the preceding VIPA address instead of the physical adapter used
to send the datagram. If no VIPA precedes the physical adapter in
the HOME list, the physical adapter IP address is used as the source
address. Refer to [z/0S Communications Server: IP Configuratior]
|Referencg| for precautions when either the VIPA address or a
physical adapter used as a source for the VIPA has an IP address
that is the network address.

PRIMARYINTERFACE
Use PRIMARYINTERFACE to specify which link should be designated as
the default local host for use by the GETHOSTID() function. If

128 2/0S V1R4.0 CS: IP Configuration Guide

PRIMARYINTERFACE is not used, the first IP address in the HOME list
becomes the default local host address.

BEGINROUTES
Use the BEGINROUTES statement to add static routes to the IP route
table.

SMFCONFIG
Use the SMFCONFIG statement to provide SMF logging for Telnet, FTP,
TCP, API, and stack activity. This statement is used for TYPE 118 and
TYPE 119 records. Refer to [zZ0S Communications Server: IP Configuratior]
for more information about the SMFCONFIG statement.

START
Use START to activate a device or interface.

TRANSLATE
Use TRANSLATE to indicate which LINK has specified network addresses
for use as a static ARP table. The first TRANSLATE statement in a
configuration data set replaces the entire ARP cache. Subsequent
TRANSLATE statements add to the table. If you are using OSPF routing
(OMPROUTE), see[Chapter 4, “Routing” on page 155|for more information
about requirements for the TRANSLATE statement.

After an IPv4 interface has a DEVICE, LINK, and HOME statement, it can be
started with the START device statement or the VARY TCPIP,,START command.

After an IPv6 interface has an INTERFACE statement, it can be started with the
START interface statement or the VARY TCPIP,,START command.

Devices that support ARP offload
Certain devices provide an ARP offload function that offloads all ARP processing to

the adapter. The function provided by the adapter impacts the ability of TCP/IP to
display ARP cache information or ARP counter statistics for these devices.

Note: ARP processing is relevant only for IPv4 LAN interfaces.

The following devices provide an ARP offload function and provide ARP cache data
or ARP counters to TCP/IP.

* MPCIPA (OSA-Express Gigabit Ethernet) with a minimum required microcode
level of [MCL] 401

* MPCIPA (OSA-Express Fast Ethernet)
* MPCIPA (OSA-Express Token Ring)

Note: If multiple TCP/IP instances are sharing the device, the ARP data will
represent all TCP/IP instances using the device. This information is provided
to TCP/IP every 30 seconds from the device.

The following devices provide an ARP offload function and do not provide any ARP
cache data or ARP counters to TCP/IP:

* MPCOSA (OSA-2 Fast Ethernet, FDDI)

* MPCIPA (OSA-Express Gigabit Ethernet) with a microcode level earlier than
[MCL] 401

Note: For IPv6 LAN interfaces, TCP/IP performs all the neighbor discovery
processing, maintains the neighbor cache, and provides the ability to display
neighbor cache information.

Chapter 3. Customization 129

HiperSockets concepts and connectivity
iQDIO (Internal Queued Direct Input/Output or HiperSockets) is a new S/390

zSeries hardware feature that provides high performance internal communications
between LPARs within the same CEC without the use of any additional or external
hardware equipment (for example, channel adapters, LANs, etc.). This support is
also referred to as HiperSockets communications. When the processor supports
HiperSockets and the CHPIDs have been configured in HCD (IOCP), TCP/IP
connectivity can occur for two reasons:

* DYNAMICXCEF is configured.
* A user defined iQDIO (MPCIPA) DEVICE and LINK is configured and started.

Therefore, there are two types of iQDIO devices:

* DYNAMICXCF iQDIO device (TRLE "IUTIQDIO"” and an MPC group of
subchannel devices). The PORTNAME will be IUTIQDxx, where xx = the QD
CHPID that VTAM uses (for example, IUTIQDFD when using IQD CHPID x’FD’).

* A user defined iQDIO device (TRLE "IUTIQDxx" and an MPC group of
subchannel devices). The PORTNAME is not applicable for this TRLE.

In both cases, the TRLE is dynamically built by VTAM. For additional details
regarding how to configure a user defined iQDIO MPCIPA device refer to the
[Communications Server: IP Configuration Reference]

Concepts and considerations for the IQD CHPID: The iQDIO hardware device
is represented by the IQD CHPID and its associated subchannel devices. All LPARs
that are configured (HCD) to use the same IQD CHPID have internal connectivity
and therefore have the capability to communicate using iQDIO. The 1QD CHPID
can be viewed as a logical LAN within the CEC. The iQDIO hardware allows up to
4 separate IQD CHPIDs to be defined per CEC, creating the capability of having 4
separate logical LANs within the same CEC. The following figures illustrate this

concept:
zSeries CEC

LPAR1 LPAR2 LPAR3 LPAR4 LPAR5

TCP, TCP, GVM,
GVM,
GVM,
z/OS z/OS Linux VM Linux
\ﬁ\
< Virtual LAN (IQD CHPID xFE) >

Figure 28. HiperSockets Virtual LAN

130 2z/0S V1R4.0 CS: IP Configuration Guide

Linux LPAR z/0S LPAR z/0S LPAR z/0S LPAR
TCP TCP TCP TCP
L-DD DD DD DD

Linux LPAA 2/0S LPAR Linux LPAR Aos LPAR
TCP TCP TCP TCP
L-DD DD L-DD DD
CHPID FF CHPID FE
“Production” “Test”

Figure 29. HiperSockets multiple LANs

Having this capability allows the system administrator to logically separate (or
control) the internal connectivity, controlling which specific LPARs are allowed to
internally connect using iQDIO. For example:

* SYSPLEX 'A’ LPARs running on LPs 1 through 4 could use IQD CHPID x'FC’.
* SYSPLEX ’B’ LPARs running on LPs 5 through 8 could use IQD CHPID x’FD’.

* A VM LPAR runs in LP 9 running various second level systems (Linux and z/OS)
which use QD CHPID x’FE’.

» combinations of the examples above could be:

— Another set of LPARs on LPs 10 through 12 which are not using
DYNAMICXCF (non SYSPLEX) are connected to IQD CHPIDs x’FE’ and
xX'FF.

— Subsets of LPARs 1 through 8 are using both the DYNAMICXCF 1QD CHPIDs
and a non-DYNAMICXCF IQD CHPIDs.

— Some LPARs are connected to all four IQD CHPIDs.

The iQDIO MPC group: VTAM will build a single iQDIO MPC group, using the
subchannel devices associated with a single IQD CHPID. VTAM will use two
subchannel devices for the read and write control devices, and 1 to 8 devices for
data devices. Each TCP/IP stack will be assigned a single data device.

Therefore, in order to build the MPC group, there must be a minimum of 3
subchannel devices defined (within HCD) and associated with the same IQD
CHPID. The maximum number of subchannel devices that VTAM will use is 10
(supporting 8 data devices or 8 TCP/IP stacks) per LPAR or MVS image. The
subchannel devices must be configured for the LPAR and online prior to when the
TCP/IP stack is initialized. Generally, the number of IQDIO subchannel devices you
should configure per LPAR is:

Chapter 3. Customization 131

2 (read / write control devices)
+ N (where N = number of TCP/IP stacks)

N+2 (total subchannel devices per LPAR)
Example (LPAR 1 starts two TCP/IP stacks and both stacks use iQDIO):

- define 4 subchannel devices on the same IQD CHPID
- where 2 are used for read / write control and 2 data devices are available

The first TCP/IP stack within the LPAR to initialize DYNAMICXCF will cause the
iQDIO MPC group (IUTIQDIO) to be dynamically created. Each TCP/IP stack can
then start the IUTIQDIO device, and each stack will be assigned a unique
(dedicated) subchannel data device from the IUTIQDIO MPC group.

IBM recommends that the IQD CHPIDs be configured using CHPIDs x’FC’ through
X'FF’ (but any valid CHPID value (xX’'00’ through X’FF’ can be configured as TYPE =
IQD). Refer to|zZOS HCD Planning and [Appendix D, “Using HCD” on page 757|for

additional details.

iQDIO Maximum Frame Size: The iQDIO hardware supports four different frame
sizes referred to as the iQDIO MFS (Maximum Frame Size). Using HCD (or IOCP),
the iQDIO MFS is configured on the IQD CHPID using the 'OS=" parameter. All
LPARs communicating over the same 1QD CHPID will then use the same 1QD MFS.
The MFS affects the largest packet that TCP/IP can transmit. TCP/IP will adjust the
MTU (Maximum Transmission Unit) based on the MFS, which is discovered during
activation.

The following table depicts the four possible TCP/IP MTU sizes resulting from the
iQDIO frame sizes:

OS=value iQDIO frame size TCP/IP MTU size
00 (default) 16K 8K

40 24K 16K

80 40K 32K

co 64K 56K

The default iQDIO MFS is 16K. However, in cases in which increased bandwidth is

required (such as large file transfers, file backup, etc.), a larger MFS could be used.
In most workload environments the default size will result in better storage and CPU
utilization.

B o o e e R T T R R T R S S R S R L L

* 0S values are '00'=16K, '40'=24K, '80'=40K and 'CO'=64K. =

* *
* Need at least 3 addresses per z/0S, maximum of 10: *
* - 2 addresses for control *
% - 1 address for data for each TCP stack (between 1 and 8) =

khhkkkhhhkhhhkhhhhhhhhrhhhhhhdhhdrhdhrhhhdhhdhhhdhrhhhhhhdhhdhrhhrhtrd
ID SYSTEM=(2064,1)
*

CHPID PATH=FC,TYPE=IQD,SHARED,0S=00

CHPID PATH=FD,TYPE=IQD,SHARED,0S=40

CHPID PATH=FE,TYPE=IQD,SHARED,05=80

CHPID PATH=FF,TYPE=IQD,SHARED,0S=C0
*

CNTLUNIT CUNUMBR=FC0O,PATH=FC,UNIT=IQD

TODEVICE ADDRESS=(2C00,16) ,CUNUMBR=FCOO,UNIT=IQD

*

CNTLUNIT CUNUMBR=FD0O,PATH=FD,UNIT=IQD

132 2/0S V1R4.0 CS: IP Configuration Guide

IODEVICE ADDRESS=(2C10,16),CUNUMBR=FD0OO,UNIT=IQD
*

CNTLUNIT CUNUMBR=FEOO,PATH=FE,UNIT=IQD

IODEVICE ADDRESS=(2C20,16),CUNUMBR=FEQO,UNIT=IQD
*

CNTLUNIT CUNUMBR=FFOO,PATH=FF,UNIT=1QD

IODEVICE ADDRESS=(2C30,16),CUNUMBR=FF00,UNIT=IQD

Refer to [z/0S HCD Planning and [Appendix D, “Using HCD” on page 757] for
additional details.

Modifying iQDIO connectivity (TCP/IP device and link and the VTAM iQDIO
(IUTIQDIO) MPC group): Certain modifications can be made to the iQDIO device
(MPC group) without disrupting an active TCP/IP stack.

z/OS supports dynamic 1/O for the iQDIO CHPID and subchannel devices allowing
subchannels devices to be added or removed to or from an LPAR which has
already been IPLed.

TCP/IP supports the STOP and START command for the iQDIO (IUTIQDIO) device.
However, the commands are only supported when the (internal) start (activation)
was successful during stack initialization. TCP/IP also supports the STOP and
START command for the user defined iQDIO devices (IUTIQDxx). Since a user
defined iQDIO device is supported as an MPCIPA device, STOP and START
function just as they would for other MPCIPA devices.

VTAM supports a MODIFY IQDCHPID command, which allows the user to change
the initial setting of the IQDCHPID start option.

Therefore, it is possible to make certain changes to the DYNAMICXCF iQDIO MPC
Group (IUTIQDIO) without restarting VTAM or an active TCP/IP stack. Examples of
changes that can be made are (STOP/START device required):

» Alter which specific IQD CHPID is used for DYNAMICXCF (for example, move
from the xX’FC’ CHPID to the XFD’ CHPID).
» Add or remove subchannel devices (for example, from the current IQD CHPID).

» Alter the IQD MFS which alters the TCP/IP MTU (for example, increase the
current IQD CHPID from 16k to 64k).

Although VTAM supports modifications to the start option IQDCHPID (and the
modification will be immediately displayed), the effects will vary depending on what
the current usage was and the change (from or to) that was made. For example:

* When MODIFIED from ANY (or CHPID) to NONE, there no effect on current
usage but blocks subsequent activations of the DYNAMICXCF iQDIO device

* When MODIFIED from NONE to ANY (or CHPID), there is no effect on current
usage but allows subsequent activations.

« When MODIFIED from CHPID_X to CHPID_Y, there is no effect on current
usage.

Note: VTAM only uses the CHPID value when building the IUTIQDIO MPC

group.
To change CHPIDs for an active MPC group the following must be done:

1. TCP/IP IUTIQDIO devices that are changing must be stopped.
2. Make any necessary HCD/IOCDS changes.
3. Verify new subchannel devices are varied online.

Chapter 3. Customization 133

134

4. Verify the MPC group has deactivated (with no usage it times out after
approximately 2 minutes).

5. Modify IQDCHPID = CHPID (to new CHPID).
6. Restart the TCP/IP IUTIQDIO devices.

In order to use iQDIO communications, the processor must have the necessary
hardware support. If the processor does not support iQDIO communications,
modifications to this start option will not be accepted, and the IQDCHPID option will
not be displayed (displayed as ***NA***) .

iQDIO connectivity and routing: For each pair of stacks within a sysplex (which
are not on the same MVS image), if all of the following conditions are true, then the
stacks will use iQDIO DYNAMICXCF connectivity (versus standard XCF links):

e The two stacks must be on the same CEC

* The two stacks must be using the same 1IQD CHPID for the DYNAMICXCF
iQDIO (IUTIQDIO) device

* Both stacks must be at the z/OS V1R2 (or higher) level and be configured (HCD)
to use iQDIO

* The initial iQDIO activation must complete successfully.

If any of the above conditions are not met, then the stacks will use XCF
connectivity.

When a DYNAMICXCEF iQDIO device and link are created and successfully
activated, a subnet route is created across the iQDIO link. The subnet is created by
using the DYNAMICXCF IP address and mask. This allows any LPAR within the
same CEC to be reached, even ones that are not within the sysplex. For example,
an LPAR that is running Linux and does not support joining the sysplex can still be
reached. The Linux LPAR must define at least one IP address for the iQDIO
endpoint that is within the subnet defined by the DYNAMICXCF IP address and
mask.

Therefore, TCP/IP can communicate with other LPARs within the CEC over the
DYNAMICXCF iQDIO (IUTIQDIO) device even when the TCP/IP in the other LPAR
is not part (joins or supports) of the sysplex. You can also elect to manually
configure an iQDIO device for non-sysplex communications.

When multiple stacks reside within the same LPAR which supports iQDIO, both
IUTSAMEH and iQDIO links will coexist. In this case, it is possible to transfer data
across either link. Because IUTSAMEH links have better performance, it is better to
always use them for intra-stack communication. A host route will be created by
DYNAMICXCEF processing across the IUTSAMEH link but not across the iQDIO link.
To avoid using the iQDIO link for communication within the same host, the following
rules should be observed:

» Specify DYNAMICXCF IP addresses within a separate subnet from VIPA
addresses.

* Do not specify static IUTSAMEH links.

It is also possible with multiple stacks in the same LPAR to end up with both XCF
and iQDIO links. This occurs when the availability of the (preferable) iQDIO link
changes as each TCP stack (within the same LPAR) is started. For example, stack
A is started with iQDIO available and later stack B is started with iQDIO
unavailable. This type of configuration should be avoided.

z/OS V1R4.0 CS: IP Configuration Guide

Efficient routing using HiperSockets Accelerator: Communications Server
leverages the technological advances and high performing nature of the I/O
processing offered by HiperSockets with the IBM zSeries servers and the IBM
OSA-Express using QDIO architecture by optimizing IP packet forwarding
processing that occurs across these two types of links. This function is referred to
as HiperSockets Accelerator. It is a configurable option, and activated by configuring
the IQDIORouting option on the IPCONFIG statement.

When configured, it allows IP packets that are forwarded across an iQDIO link from
a QDIO link (or from QDIO to iQDIO) to be forwarded by the z/OS CS HiperSockets
device driver. That is, the IP forwarding function is pushed down as close to the
hardware [or to the lowest software DLC (Data Link Control)] layer as possible so
that these packets do not have to be processed by the TCP/IP stack or address
space. Therefore, valuable TCP/IP resources (storage and machine cycles) are not
expended for purposes of routing and forwarding packets. The following figure
illustrates a configuration before the utilization of HiperSockets Accelerator.

CEC

LP1 LP12
LP2 LP11

LP3 LP10
LP7

OSA1 OSA2 OSA3 0OSA4

R -

Figure 30. Candidate configuration for HiperSockets Accelerator

HiperSockets Accelerator presents a different configuration and approach to obtain
full connectivity as shown in the figure below.

Chapter 3. Customization 135

136

OSA1 OSA2 OSA3 OSA4

Figure 31. HiperSockets Accelerator configuration

This function allows a user to position a specific or single TCP/IP stack which has
direct physical connectivity to the OSAs LANs as the iQDIO router. This stack can
then connect to all remaining TCP/IP stacks in other images (LPARs) within the
same CEC that require connectivity to the same OSA LANs using HiperSockets
connectivity.

This approach becomes more beneficial as the number of LPARs within a given
CEC increase. Instead of attempting to directly attach each LPAR to each physical
network attachment using an OSA LAN, a smaller number of OSAs could be
concentrated through a single z/OS LPAR. From a performance perspective,
HiperSockets Accelerator attempts to make the intermediate (or router) TCP/IP
stack appear as if it did not exist in the path. Instead, each LPAR will appear as if
each were directly attached to the physical network (for example, packets are
forwarded without traversing the router TCP/IP stack). There are no additional
routing configuration tasks required by the user. The prerouting occurs
automatically. The TCP/IP stack automatically detects IP packet forwarding is
occurring across a HiperSockets eligible route (QDIO/iQDIO or iQDIO/QDIO), and
dynamically creates an IDIORouting route entry. All subsequent packets will then
take the optimized device driver path, and will not traverse the TCP/IP stack.

The dynamically created iQDIO routing entries can be displayed with NETSTAT.
VTAM tuning statistics are provided to allow the user to monitor or measure
prerouting activity.

IQDIOPriority (IQDIORouting option) is an optional choice that allows the user to
specify which of the four priority queues should be used when prerouting packets
from an iQDIO link outbound to a QDIO link. The default is 1 (highest priority), and
in most cases should be sufficient.

For additional details regarding the IQDIORouting configuration option, refer to the
IPCONFIG statement in the [z7OS Communications Server: IP Configuration]

z/OS V1R4.0 CS: IP Configuration Guide

Interface-layer fault-tolerance for local area networks

(interface-takeover function)
The TCP/IP stack in the zZOS Communications Server provides transparent

fault-tolerance for failed (or stopped) IPv4 devices or IPv6 interfaces, when the
stack is configured with redundant connectivity onto a LAN. This support is provided
by the z/OS Communications Server interface-takeover function, and applies to
IPv4 MPCIPA and LCS device types and to the IPv6 IPAQENETS6 interface type.

At device or interface startup time, TCP/IP dynamically learns of redundant
connectivity onto the LAN, and uses this information to select suitable backups in
the case of a future failure of the device or interface. This support makes use of
ARP flows (for IPv4 devices) or neighbor discovery flows (for IPv6 interfaces), so
upon failure (or stop) of a device or interface, TCP/IP immediately notifies stations
on the LAN that the original IPv4 or IPv6 address is now reachable through the
backup’s link-layer (MAC) address. Users targeting the original IP address will see
no outage due to the failure, and will be unaware that any failure occurred.

Since this support is built upon ARP or neighbor discovery flows, no dynamic
routing protocol in the IP layer is required to achieve this fault tolerance. To enable
this support, you only need to configure redundancy onto the LAN:

* You need redundant LAN adapters.
* For IPv4, you must configure and activate multiple LINKs onto the LAN.
* For IPv6, you need to configure and start multiple INTERFACESs onto the LAN.

Note: An IPv4 device cannot back up an IPv6 interface, and an IPv6 interface
cannot back up an IPv4 device.

The interface-layer fault-tolerance feature can be used in conjunction with VIPA
addresses, where applications can target the VIPA address, and any failure of the
real LAN hardware is handled by the interface-takeover function. This differs from
traditional VIPA usage, where dynamic routing protocols are required to route
around real hardware failures.

IPv6 considerations: Stateless autoconfiguration and duplicate
address detection

IPv6 provides the capability of autoconfiguring addresses for an interface by using
information provided by IPv6 routers. Descriptions of this function can be found in
RFC 2461 and RFC 2462. The term autoconfigured IP address is used below to
mean an |IP address that is created as a result of information received from a router
advertisement. z/OS TCP/IP allows autoconfiguration if no IP addresses are defined
on the profile INTERFACE statement using the IPADDR keyword. If the
INTERFACE statement contains IPADDR definitions, this indicates that the
installation is defining its own IP addresses and autoconfiguration is not desired.
Subsequent descriptions use the term manually configured addresses to describe
the addresses that are defined using the IPADDR keyword.

TCP creates an autoconfigured IP address for an interface if all three of the
following conditions are met:

* The interface is active.

» A valid router advertisement containing prefix information with the autonomous
flag on is received over the interface.

* No manually configured home addresses are defined for the interface at the time
the router advertisement is received.

Chapter 3. Customization 137

138

The IP address that is created is formed by appending the interface ID generated
by the stack to the prefix supplied by the router advertisement. Autoconfigured IP
addresses can be identified in the netstat home report by the ’Autoconfigured’ flag.
For more information on the interface ID generated by the stack, see[zZ03
[Communications Server: IPv6 Network and Application Design Guide}

An autoconfigured IP address exists until one of the following occurs:

* The valid lifetime specified by the most recent router advertisement expires.
When the valid lifetime expires, the autoconfigured address is removed. Existing
connections using this address are terminated when subsequent activity occurs
on the connection. The router advertisement that contains the valid lifetime for
the autoconfigured address can also specify a preferred lifetime. The preferred
lifetime indicates that the IP address can be freely used. When the preferred
lifetime expires, the autoconfigured address is considered deprecated. The
deprecated state indicates that another IP address should be used if available
and provides a transition period before the valid lifetime expires. A deprecated IP
address can be identified in the netstat home report by the ’deprecated’ flag.

* The installation activates a profile that contains a manually configured IP address
on the same interface as the autoconfigured IP address (that is, the INTERFACE
statement contains the ADDADDR keyword). If this occurs, any autoconfigured IP
addresses on that interface are deleted and existing connections using this
address are terminated when subsequent activity occurs on the connection. The
manually configured addresses are added and duplicate address detection for
the newly added IP addresses initiated, if applicable.

Duplicate address detection is the process described in RFC 2462 which verifies
that IPv6 home addresses are unique on the local link before assigning them to an
interface. Duplicate address detection is performed on all IPv6 IPAQENET6 home
addresses, whether they are manually configured or autogenerated, unless the
INTERFACE statement specifies DUPADDRDET 0. Duplicate address detection is
not done for LOOPBACKS®6 or VIRTUAL6 addresses. The duplicate address
detection process sends a multicast neighbor solicitation and waits a period of time
to see if another neighbor indicates that the address is in use. By default, only one
neighbor solicitation is sent and the length of time waited is approximately one
second. If no neighbor responds in that interval, the address is considered unique
and the interface will start using it. The number of neighbor solicitations sent by
duplicate address detection can be modified by the DUPADDRDET keyword on the
INTERFACE statement. The duration of the wait interval (awaiting a response from
a neighbor already using the address) can be modified by information obtained from
routers on the attached network.

Duplicate address detection occurs when the interface is started. Unless the
INTERFACE statement indicated duplicate address detection is to be bypassed,
IPv6 manually configured addresses are unavailable until the interface is started
and duplicate address detection completes without finding another node on the local
link with the same address. Prior to activation of the interface, manually configured
addresses are shown in the netstat home report as unavailable with a reason of
'DUPLICATE ADDRESS DETECTION PENDING’. While the duplicated address
detection is actively in progress for an address, the netstat home report shows the
address as unavailable with a reason of 'DUPLICATE ADDRESS DETECTION IN
PROGRESS'. If another neighbor indicates the address is in use during the
duplicate address detection process, message EZZ9780I is issued and the address
is not made available to the interface. If the address that failed duplicate address

z/OS V1R4.0 CS: IP Configuration Guide

detection is a manually configured address, the address shows up in the netstat
home report as unavailable with a reason of 'DUPLICATE ADDRESS DETECTION
FAILED’.

A link-local address is required to activate a QDIO IPv6 interface and will be
generated automatically by the stack. The link-local address is generated using the
link-local prefix and the interface ID. If the link-local address generated from the
interface ID is determined to be a duplicate, the interface is not activated if:

» Autoconfigured addresses are allowed.

* A manually configured home address specifying only the prefix was specified on
the INTERFACE statement. In such a case, the interface ID needs to be used to
form the complete link-local address, and since the interface ID has been found
to be in use on the network, the formed link-local address cannot be used.

If duplicate address detection fails on the link-local address and only fully
configured manual addresses were specified on the INTERFACE statement, up to
two attempts are made to create a unique link local address using a randomly
generated value instead of the interface ID. If duplicate address detection succeeds
using the randomly generated link-local address, message EZZ9784| is issued
indicating the generated address and the interface is activated.

Setting up reserved port number definitions in PROFILE.TCPIP

shows a portion of the sample configuration file for the TCP/IP address
space, PROFILE.TCPIP. This sample can be copied from SEZAINST(SAMPPROF).
includes the portion of the sample that shows how to set up reserved port
number definitions. Descriptions for the statements follow |Figure 32|. For more
information about any of these statements, refer to [zZ0S Communications Server]
IP Configuration Reference] For information specific to IPv6 support, refer to |yog
Communications Server: IPv6 Network and Application Design Guide]

Figure 32. Example of reserved port number definitions

; AUTOLOG: Supplies TCPIP with the procedure names to start and the
; time value to wait at TCP start up for any of those procedures
; to terminate if they are active.

; AUTOLOG 5

; FTPD JOBNAME FTPD1 ; FTP Server
LPSERVE 3 LPD Server
NAMED ; Domain Name Server
NCPROUT 3 NCPROUTE Server
OROUTED ; OROUTED Server

; SNMP Agent Server

PORTMAP ; Portmap Server (SUN 3.9)
PORTMAP JOBNAME PORTMAP1 ; USS Portmap Server (SUN 4.0)
RXSERVE ; Remote Execution Server
SMTP 3 SMTP Server
SNMPQE 5 SNMP Client

5 TCPIPX25 5 X25 Server

; ENDAUTOLOG

; PORT: Reserves a port for specified job names

- A port that is not reserved in this 1ist can be used by any user.
If you have TCP/IP hosts in your network that reserve ports
in the range 1-1023 for privileged applications, you should
reserve them here to prevent users from using them.

; OSNMPD

Chapter 3. Customization 139

Th
fo
AP

Th
fo

Th
b1

Th

re

ORT

389

The RESTRICTLOWPORTS option on TCPCONFIG and UDPCONFIG will also
prevent unauthorized applications from accessing unreserved
ports in the 1-1023 range.

A PORT statement with the optional keyword SAF followed by a
1-8 character name can be used to reserve a PORT and control
access to the PORT with a security product such as RACF.
For port access control, the full resource name for the security
product authorization check is constructed as follows:
EZB.PORTACCESS.sysname.tcpname.safname
where:
EZB.PORTACCESS 1is a constant
sysname is the MVS system name (substitute your sysname)
tcpname is the TCPIP jobname (substitute your jobname)
safname is the 1-8 character name following the SAF keyword

When PORT access control is used, the TCP/IP application
requiring access to the reserved PORT must be running under a
USERID that is authorized to the resource. The resources

are defined in the SERVAUTH class.

For an example of how the SAF keyword can be used to enhance
security, see the definition below for the FTP data PORT 20
with the SAF keyword. This definition reserves TCP PORT 20 for
any jobname (the *) but requires that the FTP user be permitted
by the security product to the resource:
EZB.PORTACCESS.sysname.tcpname.FTPDATA in the SERVAUTH class.

The BIND keyword is used to force a generic server (one that
binds to INADDR_ANY) to bind to the specific IP address that
is specified following the BIND keyword. This capability could
be used, for example, to allow z/0S UNIX telnet and telnet
3270 servers to both bind to TCP port 23.

The IP address that follows bind must be in IPv4 dotted
decimal format and may be any valid address for the host
including VIPA and dynamic VIPA addresses.

e special jobname of OMVS indicates that the PORT is reserved
r any application with the exception of those that use the Pascal
I.

e special jobname of * indicates that the PORT is reserved
r any application, including Pascal API socket applications.

e special jobname of RESERVED indicates that the PORT is
ocked. It will not be available to any application.

e special jobname of INTCLIEN indicates that the PORT is
served for internal stack use.

UDP MISCSERV 5 Miscellaneous Server - echo
TCP MISCSERV Miscellaneous Server - echo
UDP MISCSERV Miscellaneous Server - discard
TCP MISCSERV Miscellaneous Server - discard

e we we we we

UDP MISCSERV Miscellaneous Server - chargen

TCP MISCSERV Miscellaneous Server - chargen

TCP * NOAUTOLOG s FTP Server

TCP » NOAUTOLOG SAF FTPDATA ; FTP Server

TCP FTPD1 ;s FTP Server

TCP FTPD2 BIND FEC9:C2D4:1:0000:0009:0067:0115:0066 ; FTP IPv6
TCP INTCLIEN 5 Telnet 3270 Server

TCP INETD1 BIND 9.67.113.3 ; z/0S UNIX Telnet server

TCP SMTP SMTP Server
TCP NAMED Domain Name Server
UDP NAMED Domain Name Server

TCP PORTMAP
UDP PORTMAP

Portmap Server (SUN 3.9)
Portmap Server (SUN 3.9)

TCP PORTMAP1 Unix Portmap Server (SUN 4.0)

UDP PORTMAP1 Unix Portmap Server (SUN 4.0)

UDP SNTPD Simple Network Time Protocol Server
UDP LLBD NCS Location Broker

UDP OSNMPD SNMP Agent

UDP SNMPQE SNMP Query Engine

Ge we we we Be we we e we we we W

TCP LDAPSRV LDAP Server

140 z/0S V1R4.0 CS: IP Configuration Guide

443 TCP HTTPS ; http protocol over TLS/SSL
443 UDP HTTPS ; http protocol over TLS/SSL
512 TCP RXSERVE ; Remote Execution Server
514 TCP RXSERVE ; Remote Execution Server
3 512 TCP * SAF OREXECD 5 z/0S UNIX Remote Execution Server
3 514 TCP * SAF ORSHELLD 5 z/0S UNIX Remote Shell Server
515 TCP LPSERVE 5 LPD Server
520 UDP OROUTED 5 OROUTED Server
580 UDP NCPROUT 5 NCPROUTE Server
750 TCP MVSKERB 5 Kerberos
750 UDP MVSKERB s Kerberos
751 TCP ADM@SRV s Kerberos Admin Server
751 UDP ADM@SRV s Kerberos Admin Server
1933 TCP ILMTSRVR ;5 IBM LM MT Agent
1934 TCP ILMTSRVR ; IBM LM Appl Agent
3000 TCP CICSTCP 5 CICS Socket
3389 TCP MSYSLDAP 5 LDAP Server for Msys

PORTRANGE: Reserves a range of

ports for specified jobnames.

s
s
s>
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

In a common INET (CINET) environment, the port range indicated by
the INADDRANYPORT and INADDRANYCOUNT in your BPXPRMxx parmlib member
should be reserved for OMVS.

The special jobname of OMVS indicates that the PORTRANGE is reserved
for ANY z/0S UNIX socket application.

The special jobname of * indicates that the PORTRANGE is reserved
for any socket application, including Pascal API socket
applications.

The special jobname of RESERVED indicates that the PORTRANGE is
bTocked. It will not be available to any application.

The SAF keyword is used to restrict access to the PORTRANGE to
authorized users. See the use of SAF on the PORT statement above.

PORTRANGE 4000 1000 TCP OMVS
PORTRANGE 4000 1000 UDP OMVS
PORTRANGE 2000 3000 TCP RESERVED
PORTRANGE 5000 6000 TCP * SAF RANGEL

SACONFIG: Configures the TCP/IP SNMP subagent

ACONFIG ENABLED COMMUNITY public AGENT 161

The following explains the statements shown in [Figure 32 on page 139)
AUTOLOG

Use AUTOLOG to list the procedure names that should start when the
TCPIP address space starts. It is also used to supply a timeout value for
detecting hung procedures at TCP/IP initialization time. The timeout value is
the time TCP/IP should allow for a procedure to come down when, at
startup, it is still active and TCP/IP is attempting to AUTOLOG the
procedure again. A hung procedure is active to MVS, but is not listening on
the socket that is reserved for it via the PORT statement. When AUTOLOG
detects a hung task, TCP/IP checks every 10 seconds (until the timeout
value has expired) to see if the procedure has come down. If the procedure
comes down during one of these 10 second intervals, it is restarted. If the
procedure is still active when the time interval specified by the timeout
value expires, then TCP/IP cancels and restarts the procedure.

The AUTOLOG statement shown in [Figure 32 on page 139|has a timeout
value of five minutes.

In the first AUTOLOG statement the FTP Server shows FTPD JOBNAME
FTPD1. This means when the TCPIP address space starts, the FTPD
procedure will be started via the MVS START FTPD command. Because

Chapter 3. Customization 141

142

PORT

FTPD forks a child process that actually listens on PORT 21 (see the PORT
statement in this section), the autolog task verifies that FTPD1 is listening
on port 21.

Similarly, when the TCPIP address space starts, the autolog task starts the
remaining 10 tasks.

Unless the tasks in the AUTOLOG list are in the PORT reservation list, the
autolog task does not check for hung tasks every five minutes. Also at
startup time, those procedures that are not on the PORT list are first
canceled and then started. This occurs because the procedure might have
been running from a previous TCP/IP address space and would need to be
started and stopped to start listening when the new stack starts.

Notes:

1. If you run multiple TCP/IP address spaces, ensure that the second
address space AUTOLOG list does not cancel the procedures of the
first. In those cases, an installation might require different procedure
names for the servers for each address space. For more information
about multiple stacks, see [‘Port management overview” on page 55|

2. You can use the AUTOLOG statement to automatically start generic
servers in a single stack environment, but you should be careful using
the AUTOLOG statement to start generic servers in a multiple stack
environment. Instead, you could use an operations automation software
package (IBM and other vendors provide these) to start generic servers
automatically. For a list of generic servers provided by TCP/IP, see
[‘Generic servers in a CINET environment” on page 58|

For those procedures that require parameters to be used on the MVS
START command, there is a PARMSTRING option. For more information,
refer to|z/0S Communications Server: IP Configuration Referencel

Use PORT to reserve ports for different jobs. This prevents a rogue
application from taking port 21, which is needed by FTP. For each port
entry, the port number, protocol, and procedure name are specified. The
first port entry shows port 7 UDP reserved for the miscellaneous echo
server for procedure MISCSERV. Similarly, port 7 of TCP is also reserved
for the same server. In this example, six ports are reserved for the
miscellaneous server.

INTCLIEN is an INTernal CLIENt to the TCPIP address space (the TN3270
Telnet server), and it runs continuously. See [Chapter 8, “Accessing remotel
lhosts using Telnet” on page 305 for more information about INTCLIEN.

NOAUTOLOG can be specified, as in the port 20 TCP * in|Figure 32 on
page 139 In this way, the port is reserved for an OMVS forked task so that

the FTP server can fork tasks to port 20 as each FTP user logs in.

Use the DELAYACKS and NODELAYACKS options to allow an installation
to delay their acknowledgments so they can be combined with data to be
sent to foreign hosts. Unless a performance reason is needed,
NODELAYACKS should be used to immediately send acknowledgments.

Use SHAREPORT when reserving a port to be shared across multiple TCP
listeners. This is not valid for UDP.

Typically, reserving a port for a specific job name is sufficient. If the port
must instead be reserved for a specific user ID or a set of user IDs, use the
SAF keyword to specify the name of a SAF resource to be associated with

z/OS V1R4.0 CS: IP Configuration Guide

the port. The user ID associated with the application that attempts to bind to
the port must be permitted to the SAF resource.

The BIND keyword is used to force a generic server (one that binds to
INADDR_ANY) to bind to the specific IP address that is specified following
the BIND keyword. This capability could be used, for example, to allow the
z/OS UNIX Telnet and TN3270 Telnet servers to both bind to TCP port 23
on different IP addresses. The IP address that follows bind can be any valid
address for the host, including VIPA and dynamic VIPA addresses. The
address supplied can be either an IPv4 address (in dotted-decimal format)
or an IPv6 address (in colon-hexadecimal format). IPv4-mapped IPv6
addresses and IPv4-compatible IPv6 addresses are not supported. For
multiple servers to bind to the same port with this function, the IP address
for each server must be unique.

RESERVED indicates that the port is not available for use by any user.

PORTRANGE
PORTRANGE is a statement used to reserve a range of ports for specified
job names.

SACONFIG
SACONFIG is the statement used to configure the information about the
SNMP subagent. Omission of this statement causes TCPIP to assume the
default value of SACONFIG ENABLED COMMUNITY public AGENT 161.
Use SACONFIG to specify the following:

* SNMP community string

* OSA/SF port number

» Agent port

* OSA management support

* Whether or not the SNMP agent can perform SNMP sets

Setting up SAF Server Access Authorization (SERVAUTH) (optional)

The TCP/IP address space uses the SERVAUTH System Authorization Facility
(SAF) class to protect TCP/IP resources from unauthorized access. The use of
SERVAUTH may be optional and is available in degrees so that installations can
pick and choose the access needed. Installations may be able to choose to use
one, all, or none of the protections provided by SERVAUTH. The customizing
described in this section is completely optional when using the IBM security product
RACF. Non-IBM security products may require customizing. A template of the
commands and all other SAF commands appears in SEZAINST(EZARACF). Refer
to|Chapter 2, “Security” on page 79| for more detailed information.

Configuring the local host table (optional)

Why configure a local host table?

You can set up the local host table to support local host name resolution. If you use
the local host table for this purpose, your socket applications will only be able to
resolve names and IP addresses that appear in your local host table.

If you need to resolve host names outside your local area, you can configure the
resolver to use a domain name server (see the NSINTERADDR statement). If you
use a domain name server, you do not need to set up any host definitions in your
resolver configuration, but you may still do so.

Chapter 3. Customization 143

If you have configured your resolver to use a name server, it will always try to do
s0, unless your TCP/IP C/C++ API applications were written with a
RESOLVE_VIA_LOOKUP symbol in the source code. You can also configure the
resolver to only use a local host table by specifying LOOKUP LOCAL in the
TCPIP.DATA configuration file. For both cases, all name resolution calls will always
use a local host table. This is probably not a technique you will see for standard
socket applications, but it may be a technique you could find useful for when you
develop your own socket applications or for testing changes before they are placed
in your name server.

It might be a good idea to have a local host table available for the resolver to use if
the name server is not reachable. If the name server does not respond to name
resolution requests, the resolver tries to use the local host table. If the name server
is reachable but returns a negative reply for a name resolution request, the resolver
tries to resolve the name using the local host table, if such a file is present.

Assume you try to resolve the host name friendly and your DOMAINORIGIN is
my.house.com, the resolver sends a query to the name server for
friendly.my.house.com. If the name server returns a negative reply (the name is not
registered), the resolver looks into the local host table for an entry of
friendly.my.house.com and, if not found, for an entry of friendly.

Due to the flexibility of the Domain Name System, it is recommended you use a
domain name server. If you set up a small TCP/IP network, the simplicity of the
local host table approach might be preferable.

The following types of local host table can be used:
+ HOSTS.LOCAL
HOSTS.LOCAL is only used for IPv4 requests.
» Jetc/hosts
/etc/hosts is only used for IPv4 requests.
» ETC.IPNODES and /etc/ipnodes

ETC.IPNODES and /etc/ipnodes can be used for IPv6 requests, and for IPv4
requests when COMMONSEARCH is coded in the resolver setup statements.

Creating HOSTS.LOCAL site host table

144

The site host table is generated from the hlg.HOSTS.LOCAL data set. This data set
contains descriptions of local host entries in the HOSTS format. HOSTS.LOCAL can
only contain IPv4 addresses. A sample HOSTS.LOCAL data set is created during
installation. The following sections describe how to update the sample
hig.HOSTS.LOCAL data set and use it to generate the two data sets,
hig.HOSTS.SITEINFO and hlg.HOSTS.ADDRINFO, which function as your site
table.

HOST entries
One line of the hig. HOSTS.LOCAL data set is used for each distinct host and ends

with four colons (:::1). The maximum length of the line is 512 characters. Each host

can have multiple IP addresses and multiple names. The line for each host has

three essential fields, separated by colons. These fields are:

* The keyword HOST

» Alist, separated by commas, of IP addresses for that host. A maximum of 6 IP
addresses can be specified.

z/OS V1R4.0 CS: IP Configuration Guide

» Alist, separated by commas, of fully qualified names for that host. A maximum of
20 host names can be specified. Only the first six host names will be used in the
hlg.HOSTS.ADDRINFO data set. All twenty host names will be used in the
hlg.HOSTS.SITEINFO data set.

For example, if you have two local hosts, LOCAL1 (IP addresses 192.6.77.4 and
192.8.4.1) and LOCAL2 (with an alias LOCALB and IP address 192.6.77.2), append
the following lines to the hlg.HOSTS.LOCAL data set:

HOST : 192.6.77.4, 192.8.4.1 : LOCAL1 ::::
HOST : 192.6.77.2 : LOCAL2, LOCALB ::::

Note: The maximum length for a host allowed in the HOST tables is 24 characters.

NET and GATEWAY entries

The NET and GATEWAY statements are not used by TCP/IP for z/OS applications.
However, some socket calls require the NET entries. If your programs do not need
the NET and GATEWAY statements, delete them before invoking MAKESITE.

Sample HOSTS.LOCAL data set (HOSTS): Following is the sample
HOSTS.LOCAL data set provided in SEZAINST(HOSTS):

; HOSTS.LOCAL

COPYRIGHT = NONE.

The format of this file is documented in RFC 952, "DoD Internet
Host Table Specification".

The format for entries is:

NET : ADDR : NETNAME :
GATEWAY : ADDR, ALT-ADDR : HOSTNAME : CPUTYPE : OPSYS : PROTOCOLS :
HOST : ADDR, ALT-ADDR : HOSTNAME, NICKNAME : CPUTYPE : OPSYS : PROTOCOLS :

Where:
ADDR, ALT-ADDR = IP address in decimal, e.g., 26.0.0.73
HOSTNAME, NICKNAME = the fully qualified host name and any nicknames
CPUTYPE = machine type (PDP-11/70, VAX-11/780, IBM-3090, C/30, etc.)
OPSYS = operating system (UNIX, TOPS20, TENEX, VM/SP, etc.)
PROTOCOLS = transport/service (TCP/TELNET,TCP/FTP, etc.)
: (colon) = field delimiter
:: (2 colons) = null field

**%% CPUTYPE, OPSYS, and PROTOCOLS are optional fields.

MAKESITE does not allow continuation lines, as described in

note 2 of the section "GRAMMATICAL HOST TABLE SPECIFICATION"
in RFC 952. Entries should be specified on a single line of
up to a maximum of 512 characters per Tine.

Note: The NET and GATEWAY statements are not used by the TCP/IP for
MVS applications. However, some socket calls require the NET
entries. For better performance, if your programs do not need
the NET and GATEWAY statements, delete them before running
the MAKESITE program.

We We We We Be Ve Ve We We We Ve Ve Ve We We Ve Ve Ve We We We Ve Ve Ve We We Be Ve Ve Ve We Be Ve e

HOST : 9.67.43.100 : NAMESERVER ::::
HOST : 9.67.43.126 : RALEIGH ::::
HOST : 129.34.128.245, 129.34.128.246 : YORKTOWN, WATSON ::::

B

Chapter 3. Customization 145

NET : 9.67.43.0 : RALEIGH.IBM.COM :

GATEWAY : 129.34.0.0 : YORKTOWN-GATEWAY ::::

Using MAKESITE

Because many servers and commands allocate hlg.HOSTS.SITEINFO and
hlg.HOSTS.ADDRINFO, it is important not to overwrite or delete these data sets
while TCP/IP is running. To avoid disrupting any active users, use an HLQ=parm
that is different than your active hlg. This allows you to swap names (by renaming
the old HOSTS data sets and then renaming the new HOSTS data sets) without
starting and stopping TCP/IP.

Use MAKESITE as a TSO command or in a batch job to generate new
hlg.HOSTS.SITEINFO and hlg.HOSTS.ADDRINFO data sets. The parameters are
the same for either a TSO command or a batch job invocation of MAKESITE. Refer
to|z/0S Communications Server: IP System Administrator’s Commands| for more
information.

After you make changes to your hiq. HOSTS.LOCAL data set, you must generate
and install new hlg.HOSTS.SITEINFO and hlg.HOSTS.ADDRINFO data sets.

For the search orders used in locating the local host tables, see [‘Configuration files|
ffor TCP/IP applications” on page 26|

Creating /etc/hosts

The /etc/hosts HFS file can be defined as follows:

* The maximum line length is 256 characters. If a line is greater than 256
characters, it is truncated to 256 characters and processed. If trace resolver is
active, a warning message is issued.

* The line starts with an IP address, followed by a blank, followed by host names.
Host names are separated by one or more blanks.

* Only IPv4 addresses are supported.

» Each IP address can have up to 35 host names.

* The values for the host name must conform to the following:

Maximum of 128 characters.

Must contain one or more tokens separated by a period.

Each token must be larger than one character and less than 64 characters.
First character in each token must start with a letter (A-Z or a-z).

* A comment is indicated by the # or ; character.

For the search orders used in locating /etc/hosts, see [‘Configuration files for TCP/IP|
lapplications” on page 26}

Creating ETC.IPNODES and /etc/ipnodes

146

The ETC.IPNODES and /etc/ipnodes file can be defined as follows:

» HFS files can reside in any directory. The maximum line length supported is 256
characters. If a line is greater than 256 characters, it is truncated to 256
characters and processed. If trace resolver is active, a warning message is
issued.

* MVS data sets must be partitioned organization (PO) or sequential (PS),
RECFM=F or RECFM=FB, a logical record length (LRECL) between 56 and 256,
and have any valid blocksize (BLKSIZE) for fixed block.

z/OS V1R4.0 CS: IP Configuration Guide

* It can contain IPv4 and IPv6 addresses, but not IPv4 mapped addresses. Each

IP address can have up to 35 host names.
* The values for the host name must conform to the following:
Maximum of 128 characters.
Must contain one or more tokens separated by a period.

First character in each token must start with a letter (A-Z or a-z).
* A comment is indicated by the # or ; character.

Each token must be larger than one character and less than 64 characters.

The sample IPNODES file provided by z/0OS Communications Server follows. It can

be found as member EZBREIPN (alias IPNODES) in SEZAINST.

IBM z/0S Communications Server
SMP/E distribution name: EZBREIPN

5694-A01 (C) Copyright IBM Corp. 2002.
Licensed Materials - Property of IBM

Function: Sample ETC.IPNODES file

The file contains the Internet Protocol (IP) host names

and addresses for the local host and other hosts in the

Internet network.

This file is used to resolve a name into an address (that is, to
translate a host name into its Internet address) or resolve

an address into a name.

Comments begin with a # or ; character and continue until the
end of the line.

The following statement defines the Internet Protocol (IP) name
and address of the Tocal host and specifies the names and
addresses of remote hosts. The maximum line Tength support is
256 characters

Entries in the hosts file have the following format:

Address HostName

Address HostNamel HostName2 HostName3 HostName35

Address: is an IP address, it can be IPV4 or IPV6 address.
Note: IPv4-mapped IPv6 address is not allowed.

HostName: the length of the hostname is up to 128 characters,
and each IP address can have up to 35 hostnames.

We We We Le Ve Ve We We We Ve Ve Ve We We Be Ve Ve We We Ve Ve Ve Ve We We We Ve Ve We We Be Ve Ve Ve We Be Ve

9.67.43.100 NAMESERVER

9.67.43.126 RALEIGH

9.67.43.222 HOSTNAMEL.RALEIGH.IBM.COM
129.34.128.245 YORKTOWN WATSON

1::2 TESTIPV6ADDRESS1

1:2:3:4:5:6:7:8 TESTIPV6ADDRESS2

For the search orders used in locating ETC.IPNODES and /etc/ipnodes, see

[‘Configuration files for TCP/IP applications” on page 26|

Chapter 3. Customization

147

Verifying your configuration

At this point, your configuration files have been updated.

To verify a configuration, start the TCP/IP address space and ensure that you see
the following message:

EZB64731 TCP/IP STACK FUNCTIONS INITIALIZATION COMPLETE

If the message is not displayed, the messages issued by the TCP/IP address space

should describe why TCP/IP did not start.

Verify TCPIP.DATA and TCPIPJOBNAME

Note: For all of the following examples, the unchanged SAMPPROF shipped with
TCP/IP is used as the PROFILE.TCPIP. No resolver GLOBALTCPIPDATA
was used.

From the TSO ready prompt, verify that the TCPIP.DATA file specifies the correct

TCP/IP address space by typing a NETSTAT command. If the wrong
TCPIPJOBNAME is specified, you will see the following message:

netstat

EZ723771 Could not establish affinity with TCPXXX (1011/11B3005A) - cannot
provide the requested option information

READY

With a TCPIP.DATA file correctly specifying TCPIP, the following results are

displayed. To ensure that the correct TCPIP.DATA file is found in the example, the
SYSTCPD is explicitly allocated.

alloc f(systcpd) dsn('sysl.tcpparms(tcpdata)') shr reuse

READY
netstat home

MVS TCP/IP NETSTAT CS VIR4 TCPIP NAME: TCPIP 17:10:57
Home address Tlist:

Address Link Flg

127.0.0.1 LOOPBACK P

READY

Verify /etc/resolv.conf

148

Next, verify the UNIX System Services environment with the onetstat commands.
The following example shows the incorrect address space.

The /etc/resolv.conf file is shown.

Note: You only need to create /etc/resolv.conf if you want to maintain separate
resolver configuration files for the different APIs.
EDIT /etc/resolv.conf Columns 00001 00072

Command ===> Scroll ===> PAGE
KXKXKRKK* hhkhhhkhhhhhhhhhhhhhhhhkhhkhkhdhihdxdx Top of Data KAAKXKKAKIKA A KA A Ak hhkhhhhhhhk

000001 TCPIPJOBNAME TCPCS2

netstat -h
Unable to open UDP socket to TCPCS2 : TCPCS2 is not active.

With the /etc/resolv.conf correctly specified with TCPIPJOBNAME TCPIP, the
following is displayed:

z/OS V1R4.0 CS: IP Configuration Guide

onetstat

MVS TCP/IP onetstat CS VIR4 TCPIP Name: TCPIP 13:15:51
User Id Conn Local Socket Foreign Socket State
BPXOINIT 00000011 0.0.0.0..10007 0.0.0.0..0 Listen
TCPIP 0000000B 0.0.0.0..1025 0.0.0.0..0 Listen
TCPIP 00000010 0.0.0.0..23 0.0.0.0..0 Listen
TCPIP 0000000F 127.0.0.1..1025 127.0.0.1..1026 Establsh
TCPIP 0000000E 127.0.0.1..1026 127.0.0.1..1025 Establsh
Syslogdl 00000012 0.0.0.0..514 *, Lk upp

Verifying PROFILE.TCPIP with netstat or onetstat

Many configuration values specified within the PROFILE.TCPIP file can be verified
with the netstat command. To verify the physical network and hardware definitions,
use the NETSTAT DEV command. To see operating characteristics use NETSTAT
CONFIG. A version of Netstat runs in the TSO and UNIX environments and from
the MVS operator environment. Refer to [zZ0S Communications Server: IP System|
lAdministrator's Commands| for information about the syntax and output of the
commands. Following is output from the TSO NETSTAT command. Use the netstat
command in the environment with which you are most comfortable.

NETSTAT DEVLINKS

MVS TCP/IP NETSTAT CS VIR4
DevName: LOOPBACK
DevStatus: Ready
LnkName: LOOPBACK Lnk
NetNum: @ QueSize: 0
BytesIn: 2560
ActMtu: 65535
BSD Routing Parameters:
MTU Size: 00000
DestAddr: 0.0.0.0
Multicast Specific:
Multicast Capability: No

TCPIP NAME: TCPCS 13:40:35

DevType: LOOPBACK

Type: LOOPBACK LnkStatus: Ready

BytesOut: 2560

Metric: 00
SubnetMask: 0.0.0.0

DevName: LCS1 DevType: LCS DevNum: 0D0OO
DevStatus: Ready
LnkName: TR1 LnkType: TR LnkStatus: Ready
NetNum: @ QueSize: 0

BytesIn: 1390158
MacAddrOrder: Non-Canonical
IpBroadcastCapability: Yes
MacAddress: 0123456789AB
ActMtu: 1492

BSD Routing Parameters:
MTU Size: 02000
DestAddr: 0.0.0.0

Packet Trace Setting:
Protocol: *

BytesOut: 842254
SrBridgingCapability: Yes
ArpBroadcastType: A1l Rings

Metric: 100
SubnetMask: 255.255.255.128

TrRecCnt: 00000006 PckLength: FULL

SrcPort: * DestPort: =
IpAddr: = SubNet: =*

Multicast Specific:
Multicast Capability: Yes
Group RefCnt
224.0.0.1 0000000001

DevName: HYDRAPFD DevType: MPCIPA

DevStatus: Ready CfgRouter: Pri ActRouter: Pri

LnkName: LHYDRAF LnkType: IPAQENET LnkStatus: Ready
NetNum: O QueSize: 0 Speed: 0000001000

BytesIn: 0
IpBroadcastCapability: No
ArpOffload: Yes

BytesOut: 0

ArpOffloadInfo: Yes

Chapter 3. Customization

149

150

ActMtu: 1000
BSD Routing Parameters:

MTU Size: 00000 Metric: 00

DestAddr: 0.0.0.0 SubnetMask: 255.0.0.0
Multicast Specific:

Multicast Capability: Unknown

DevName: OSATRL90 DevType: ATM

DevStatus: Not Active

LnkName: OSA9OLINK1 LnkType: ATM LnkStatus: Not Active
NetNum: © QueSize: 0
BytesIn: 0 BytesOut: 0

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 255.0.0.0

ATM Specific:
ATM portName: 0SA90

ATM PVC Name: STEPH PVC Status: Not Active
ATM LIS Name: LISI1

SubnetValue: 9.67.1.0 SubnetMask: 255.255.255.0
DefaultMTU: 0000009180 InactvTimeOut: 0000000300
MinHoldTime: 0000000060 MaxCalls: 0000001000
CachEntryAge: 0000000900 ATMArpReTry: 0000000002
ATMArpTimeQut: 0000000003 PeakCelTRate: 0000000000
NumOfSVCs: 0000000000 BearerClass: C

ATMARPSV Name: ARPSV1

VcType: PVC ATMaddrType: NSAP
ATMaddr:

IpAddr: 0.0.0.0

Multicast Specific:
Multicast Capability: No

DevName: CLAW2 DevType: CLAW DevNum: 0D10
DevStatus: Ready CfgPacking: Yes ActPacking: Packed
LnkName: CLAW2LINK LnkType: CLAW LnkStatus: Ready

NetNum: © QueSize: 0
BytesIn: 0 BytesOut: 0

ActMtu: 2500
BSD Routing Parameters:

MTU Size: 00000 Metric: 00

DestAddr: 0.0.0.0 SubnetMask: 255.255.255.0
Multicast Specific:

Multicast Capability: Yes

The SAMPPROF provided defines only the LOOPBACK address (as shown in this
example).

Your installation should have a DEVICE for each interface used by TCP/IP.
Counters, BSD Routing Parameters, and Multicast information is given but will not
be discussed here. See [Chapter 4, “Routing” on page 155|and [z/0§
[Communications Server: IP Configuration Reference{for more information on these
topics.

NETSTAT CONFIG

MVS TCP/IP NETSTAT CS VIR4 TCPIP NAME: TCPCS 14:09:59
TCP Configuration Table:

DefaultRcvBufSize: 00016384 DefaultSndBufSize: 00016384
DefltMaxRcvBufSize: 00262144

MaxReTransmitTime: 120.000 MinReTransmitTime: 0.500

RoundTripGain: 0.125 VarianceGain: 0.250
VarianceMultiplier: 2.000 MaxSeglLifeTime: 60.000
DefaultKeepALive: 00000120 LogProtoErr: 00
RestrictLowPort: Yes SendGarbage: No

z/OS V1R4.0 CS: IP Configuration Guide

TcpTimeStamp: Yes FinWait2Time: 600

UDP Configuration Table:

DefaultRcvBufSize: 00065535 DefaultSndBufSize: 00065535
CheckSum: 00000001 LogProtoErr: 01
RestrictLowPort: Yes NoUdpQueuelLimit: Yes

IP Configuration Table:
Forwarding: Yes TimeToLive: 00064 RsmTimeQut: 00060
FireWall: No

ArpTimeout: 01200 MaxRsmSize: 65535 Format: Short
IgRedirect: Yes SyspIxRout: Yes DoubTeNop: No
StopClawEr: No SourceVipa: Yes VarSubnet: Yes

MultiPath: No PathMtuDsc: Yes DevRtryDur: 0000000090
DynamicXCF: Yes

IpAddr: 199.11.84.104 SubNet: 255.255.248.0 Metric: 00
IQDIORoute: No
TcpStackSrcVipa: No

SMF Parameters:

Type 118:
Teplnit: 01 TcpTerm: 02 FTPClient: 03
TN3270CTlient: 00 TcpIpStats: 05

Type 119:
TepInit: No TcpTerm: No FTPClient: Yes
TcplpStats: Yes IfStats: Yes PortStats: Yes
Stack: Yes UdpTerm: Yes TN3270CTient: Yes

Global Configuration Information:
TcpIpStats: 01 ECSALimit: 0002047M PoolLimit: 2096128K

The output from the NETSTAT CONFIG command should show many of the
settings specified in PROFILE.TCPIP or implicitly taken from default values. Values
set by the PROFILE.TCPIP operating characteristics can be verified at this point.

Verifying interfaces with PING and TRACERTE

PING and TRACERTE can be used to verify adapters or interfaces attached to the
z/OS host. Again, oping and otracert can be used in the z/OS UNIX environments
with identical results. Since the example shipped with TCPIP has only the
LOOPBACK address, for this section a 3172 LCS has been defined.

NETSTAT DEVLINKS

MVS TCP/IP NETSTAT CS V1R4 TCPIP NAME: TCPCS 13:40:35
DevName: LOOPBACK DevType: LOOPBACK
DevStatus: Ready
LnkName: LOOPBACK LnkType: LOOPBACK LnkStatus: Ready
NetNum: 0 QueSize: 0
BytesIn: 2560 BytesOut: 2560

ActMtu: 65535
BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 0.0.0.0
Multicast Specific:
Multicast Capability: No

DevName: LCS1 DevType: LCS DevNum: 0DOO
DevStatus: Ready
LnkName: TR1 LnkType: TR LnkStatus: Ready
NetNum: © QueSize: 0
BytesIn: 1390158 BytesOut: 842254

MacAddrOrder: Non-Canonical SrBridgingCapability: Yes
IpBroadcastCapability: Yes ArpBroadcastType: A1l Rings
MacAddress: 0123456789AB

ActMtu: 1492

Chapter 3. Customization 151

BSD Routing Parameters:

MTU Size: 02000 Metric: 100
DestAddr: 0.0.0.0 SubnetMask: 255.255.255.128
Packet Trace Setting:
Protocol: =* TrRecCnt: 00000006 PckLength: FULL
SrcPort: = DestPort: =*
IpAddr: = SubNet: =*

Multicast Specific:
Multicast Capability: Yes
Group RefCnt

224.0.0.1 0000000001

NETSTAT HOME

MVS TCP/IP NETSTAT CS VIR4 TCPIP NAME: TCPCS 14:15:47
Home address Tist:

Address Link Flg

9.67.113.27 TR1 p

127.0.0.1 LOOPBACK

ping 9.67.113.27

CS V1R4: Pinging host 9.67.113.27
Ping #1 response took 0.000 seconds.
READY
ping 127.0.0.1

CS VIR4: Pinging host 127.0.0.1

Ping #1 response took 0.000 seconds.
READY

tracerte 9.67.113.27

CS VIR4: Traceroute to 9.67.113.27 (9.67.113.27)
19.67.113.27 (9.67.113.27) 4 ms 6 ms 4 ms
READY
tracerte 127.0.0.1

CS V1R4: Traceroute to 127.0.0.1 (127.0.0.1)

1 LOOPBACK (127.0.0.1) 4 ms 4 ms 4 ms

READY

Given that your PROFILE.TCPIP file contains the interfaces of your installation and
that the TCPIP.DATA file contains the correct TCPIPJOBNAME, the TCPIP address
space is configured and you can go on to configuring routes, servers, and so on.

Verifying local name resolution with TESTSITE

Use the TESTSITE command to verify that the hig.HOSTS.ADDRINFO and
hlg.HOSTS.SITEINFO data sets can correctly resolve the name of a host, gateway,
or net. For more information on the TESTSITE command, refer to [z/09
[Communications Server: IP System Administrator’s Commands}

Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST

152

Use the HOMETEST command to verify the HOSTNAME, DOMAINORIGIN,
SEARCH, and NSINTERADDR TCPIP.DATA statements. HOMETEST will use the
resolver to obtain the IP addresses assigned to the HOSTNAME and compare them
to the HOME list specified in PROFILE.TCPIP. A warning message will be issued if
any HOSTNAME IP addresses are missing from the HOME list.

Activate TRACE RESOLVER if you would like detailed information on how the
HOSTNAME is resolved to IP addresses. The information will also include what
TCPIP.DATA data set names were used. This can be done by issuing the following
TSO command before running HOMETEST. The detailed information will be
displayed on your TSO screen.

allocate dd(systcpt) da(x)

z/OS V1R4.0 CS: IP Configuration Guide

Issue the following TSO command after HOMETEST to turn off TRACE RESOLVER
output.

free dd(systcpt)

If you do not have TRACE RESOLVER turned on before running HOMETEST, the
following is displayed:
hometest

Running IBM MVS TCP/IP CS V1R4 TCP/IP Configuration Tester
FTP.DATA file not found. Using hardcoded default values.
TCP Host Name is: MVS026

Using Name Server to Resolve MVS026
The following IP addresses correspond to TCP Host Name: MVS026
9.67.113.58

The following IP addresses are the HOME IP addresses defined in PROFILE.TCPIP:
9.67.113.58
127.0.0.1

A1l IP addresses for MVS026 are in the HOME Tist!

Hometest was successful - all Tests Passed!

Verifying your X Windows System installation (Optional)

Note: You cannot verify your X Windows System until after routing and DNS setup.
Support is provided for two versions of the X Windows System and the
corresponding OSF/Motif. The current support, provided as part of the base IP
support in z/OS CS, is for X Windows System Version 11 Release 6 and OSF/Motif
Version 1.2. Support for X Windows System Version 11 Release 4 and OSF/Motif
Version 1.1 is available as feature HIP614X.

Verifying the X Windows X11R4 System installation
X Windows X11R4 System is installed with the other target libraries. The macro or
headers go into the target library data set hig. SEZACMAC. To verify the installation
of the X Windows System:
1. Specify your workstation IP address by adding a record (such as the following)
to your XWINDOWS.DISPLAY data set.
royal.csc.ibm.com:0.0

In this example, royal.csc.ibm.com:0.0 is the name of the host running the X
Windows System server.

Note: No leading blanks are allowed in this record.

2. On the workstation running the X Windows System server, issue an XHOST
command specifying the name of your MVS system.

3. Run the program with the XSAMP1 command.

Verifying the X Windows X11R6 System installation

To verify the installation of the X Windows X11R6 System:

1. Ensure that a host (the workstation) with an X Windows System server that
supports X11R6 is properly configured and reachable by the MVS system. From
the workstation, use Telnet to access the MVS system, and open a z/OS UNIX
shell on the MVS system.

Chapter 3. Customization 153

154

From the z/OS UNIX shell, export the DISPLAY environment variable using
either the network name or the qualified IP address of the workstation as shown
in the following example:

export DISPLAY=royal.csc.ibm.com:0.0

In this example, royal.csc.ibm.com is the name of the workstation running the X
Windows System server. The display is indicated by :0.0, and is specified this
way in almost all cases.

Authorize the MVS system to access the workstation by executing the XHOST
command, and specify either the name of the MVS system or a plus sign (+) as
shown in the following example.

xhost +

Note: The + option turns off security for this workstation and allows any X client
to display here.

The sample X clients are shipped in the directory

/usr/lpp/tcpip/X11R6/Xamples/demos. Change into this directory. There are four

sample program directories, xsamp1, xsamp2, xsamp3, and pexsamp. Change
to the xsamp1 directory. Verify that there are files named Makefile and
xsamp1.c, and then execute the following command:

make

Execute the program using the following command:

xsampl

The z/OS UNIX shell should block as another window is opened. Verify the
workstation is displaying a new window. The xsamp1 client displays a blank
window for 60 seconds and then exits, taking its window with it. The z/OS UNIX
shell should no longer be blocked.

z/OS V1R4.0 CS: IP Configuration Guide

Chapter 4. Routing

The objective of this chapter is to guide you through the steps required to configure
static or dynamic routing and explain how to verify the configuration. The contents
of this chapter are based on the assumption that you understand your entire
network configuration. It also assumes that you have read and completed all of the
verification tasks outlined in previous chapters in this document.

After reading this chapter, you should be able to do the following:
» Configure static or dynamic routing
* PING a remote host by IP address

* Use TRACERTE to determine the path that will be taken to reach a particular
destination

* Use NETSTAT to display your routing table
* Use DISPLAY commands to display dynamic routing information

Note: The definition or modification of an installation’s routing configuration should
not be performed without a complete understanding of the entire network
design.

Routing terminology

General terms

The following list describes some of the more common IP routing-related terms and
concepts. If you need more detailed information, refer to Routing in the Internet by
Christian Huitema.

Autonomous System (AS)
A group of routers exchanging routing information through a common
routing protocol. A single AS can represent a large number of IP networks.

Dynamic routes
IP layer routing table entries that are dynamically managed and can
automatically change in response to network topology changes. For IPv4,
these routes are managed by a routing daemon. For IPv6, these routes are
learned by listening to router advertisement messages received from
routers.

Exterior Gateway Protocol (EGP)
A routing protocol spoken by routers belonging to different Autonomous
Systems when those routers are configured to share routing information
between Autonomous Systems. This chapter does not discuss exterior
gateway routing.

Interior Gateway Protocol (IGP)
A routing protocol spoken by routers belonging to the same Autonomous
System. Each AS has a single IGP. A separate AS within a network can be
running a different IGP.

Replaceable static routes
IPv4 static routes that can be replaced by OMPROUTE, or IPv6 static
routes that can be replaced by routes learned by listening to router
advertisement messages received from routers.

© Copyright IBM Corp. 2000, 2002 155

Router
A device or host that interprets protocols at the IP layer and forwards
datagrams on a path towards their correct destination.

Routing
The process used in an IP network to deliver a datagram to the correct
destination.

Routing daemon
A server process that manages the IP route table.

Static routes
IP layer routing table entries that are manually configured and do not
change automatically in response to network topology changes, except
when the change is due to an ICMP redirect (if not disabled).

Interior Gateway Protocols (IGP)

An interior gateway protocol is a dynamic route update protocol used between
routers that run on TCP/IP hosts within a single autonomous system. The routers
use this protocol to exchange information about IP routes.

Some of the more common interior gateway protocols are:

Routing Information Protocol (RIP)
RIP uses a distance vector algorithm to calculate the best path to a
destination based on the number of hops in the path. RIP has several
limitations. Some of the limitations which exist in RIP Version 1 are resolved
by RIP Version 2.

RIP Version 2
RIP Version 2 extends RIP Version 1. Among the improvements are
support for multicasting and variable subnetting. Variable subnetting
allows the division of networks into variable size subnets. For
example, one route can represent addresses from 9.1.1.0 through
9.1.1.255 (the 9.1.1.0/255.255.255.0 subnet) while another can
represent addresses from 9.2.0.0 through 9.2.255.255 (the
9.2.0.0/255.255.0.0 subnet).

Open Shortest Path First (OSPF)
OSPF uses a link state or shortest path first algorithm. OSPF’s most
significant advantage compared to RIP is the reduced time needed to
converge after a network change. In general, OSPF is more complicated to
configure than RIP and might not be suitable for small networks.

Table 9. Interior Gateway Protocol characteristics

@)

Feature RIP-1 RIP-2 OSPF

Algorithm Distance Vector Distance Vector Shortest Path First
Network Load (1) High High Low

CPU Processing Low Low High

Requirement (1)

IP Network Design Many Some Virtually none
Restrictions

Convergence Time Up to 180 seconds Up to 180 seconds Low

Multicast supported | No Yes Yes

z/OS V1R4.0 CS: IP Configuration Guide

Table 9. Interior Gateway Protocol characteristics (continued)

1. Depends on network size and stability.

2. Multicast saves CPU cycles on hosts that are not interested in certain periodic updates,
such as OSPF link state advertisements or RIP-2 routing table updates. Multicast
frames are filtered out either in the device driver or directly on the interface card if this
host has not joined the specific multicast group.

3. RIP in OMPROUTE allows multiple equal-cost routes only for directly-connected
destinations over redundant interfaces. See[‘Using static routing with OMPROUTE” on|

Feature RIP-1 RIP-2 OSPF
Multiple equal-cost No (3) No(3) Yes
routes

Notes:

Static versus dynamic routing

Whether static or dynamic routing is used, the IP layer routing mechanism is the
same. The IP layer routes a packet by searching its routing table for the most
specific route known. Route selection occurs in the following order:

1. If a route exists to the destination address (a host route), it is chosen.
2. At this point, the route chosen depends upon the version of IP being used:

¢ For IPv4:

a. If subnet, network, or supernetwork routes exist to the destination, the
route with the most specific network mask (the mask with the most bits
on) is chosen.

b. If the destination is a multicast destination and a multicast default route

exists, that route is chosen.

* For IPvG, if prefix routes exist to the destination, the route with the most

specific prefix is chosen.

3. Default routes are chosen when no other route exists to a destination.

Multiple equal-cost routes are allowed for both static and dynamic routing, as

depicted in [Table 9 on page 156

The sample network

[Figure 33 on page 158|shows a network diagram that depicts a sample network.

This sample will be used in the following sections as the configuration of static and
dynamic routing is described. See ['IPv4 static routing” on page 158| ['IPv6 static]

[routing” on page 161} and|‘Dynamic routing using OMPROUTE” on page 166 for

more information.

Chapter 4. Routing 157

Area0.0.0.0 OSPF AS “ " Area 0.0.0.0
Areai.1.1.1

9.67.104.15
9.67.104.16
9.67.104.25

20.1.15

ROUTER ROUTER
2222 2/0S 705 5555
HOST HOST
4444 7777
TCPCS4 TCPCS7 9.67.107.5

\

9.67.105.4 9.67.102.7

2/08
HOST
6.6.6.6

TCPCS6

ROUTER ROUTER

FECO0:0:0:A1C::/64 > ¢ FEC0:0:0:A1B::/64

9.67.100.8 |

e

ROUTER ROUTER
3.3.33 8.8.8.8

130.200.1.8

130.200
255.252.0.0

Figure 33. Sample network

Note: In this sample network, TCPCS4 and TCPCS7 are both performing as OSPF
Area Border Routers between OSPF Areas 0.0.0.0 and 1.1.1.1. TCPCS7 is
also performing as an AS Boundary Router between the OSPF AS and the
RIP AS.

IPv4 static routing

Static routing requires that routes are configured manually for each router or
destination; this is a significant reason system administrators avoid this technique (if
given a choice). Static routing has the disadvantage that network reachability is not
dependent on the state of the network itself. If a destination is down or unreachable
via that statically configured route, the static routes remain in the routing table, and
traffic continues to be sent toward that destination without success.

To minimize network administrator tasks, configuration of static routes is to be
avoided, especially in a large network. However, certain circumstances make static
routing more appropriate. For example, static routes can be used:

» To define a default route or a route that is not being advertised within a network

158 2z/0S V1R4.0 CS: IP Configuration Guide

* To replace exterior gateway protocols when:
— Trying to avoid the cost of routing protocol traffic between ASs
— Trying to avoid complex routing policies

* In conjunction with a routing daemon to provide backup routes when the daemon
cannot find a dynamic route to the destination

If static routing is used, only the PROFILE.TCPIP data set has to be updated with
either the BEGINROUTES or GATEWAY statements. The BEGINROUTES
statement is recommended to define static routes due to its ease of use and
additional functionality. Additionally, if static routes are to be replaceable by
OMPROUTE, the BEGINROUTES configuration statement must be used.
GATEWAY does not support definition of replaceable static routes, and a static
route defined on a GATEWAY statement will not be replaceable by a routing
daemon.

The only ways to modify static routes are:

* Replace the routing table using the VARY TCPIP,,OBEYFILE command

» Use incoming ICMP Redirect packets

* Use ICMP Must Fragment packets

 If a static route is defined on a BEGINROUTES statement as being replaceable,
it can be replaced if a dynamic route is discovered by OMPROUTE. This is the

only way that a static route can be replaced by a dynamic route, and a static
route cannot be replaced by OROUTED.

For more information on the VARY TCPIP,,OBEYFILE command, the IPCONFIG
statement, and the IGNOREREDIRECTS and PATHMTUDISC parameters for the
IPCONFIG statement, see|zZ0S Communications Server: IP Configuration|

Note that the first BEGINROUTES or GATEWAY statement in PROFILE.TCPIP or
an OBEYFILE data set replaces all static routes in the TCP/IP stack routing table
(including those destination addresses specified in the BSDROUTINGPARMS
section of the PROFILE.TCPIP). Subsequent statements within the same data set
append to the routing table. Also, both BEGINROUTES and GATEWAY statements
cannot be used within the same data set.

Every interface must have an IP address to transmit or receive packets. Along with
the IP address, each interface must have a subnet mask associated with it for
routing purposes. The combination of the address and mask will yield the subnet
that the interface belongs to and also determines the broadcast address for the
interfaces. There are two ways to specify the subnet mask:

» Specify the netmask on the BSDROUTINGPARMS statement in PROFILE.TCPIP

* Allow z/OS CS to select the interface netmask using information in the routing
tables.

The BSDROUTINGPARMS statement is highly recommended to set the netmask
value for each physical interface. If either OROUTED or NCPROUTE is used, then
BSDROUTINGPARMS are required.

Replaceable static routes: Because replaceable static routes are intended to be
last-resort routes, TCP/IP attempts to use them only if no dynamic routes to the
destination are available.

If a non-replaceable static route fails validation, even if the reason for the failure is
transient like gateway unreachable, the definition for the non-replaceable static

Chapter 4. Routing 159

route is discarded. However, if a replaceable static route fails validation for a
transient reason, the definition of the route is retained and when there are no
dynamic routes to the destination, TCP/IP periodically retries, adding the
replaceable static route to the routing table. Because of these periodic retries
multiple EZZ43331 messages may be seen. Retries will be performed no more often
than every 30 seconds, and only as long as there are no active routes to the
destination in the routing table, and only if at least one new route has been added
to the routing table since the last retry. Retries are terminated as soon as a valid
route to the destination is installed into the routing table, whether it is dynamic,
static, or replaceable static.

Using static routing with OMPROUTE

160

It is recommended that non-replaceable static routes not be used with OMPROUTE
because this will prevent those routes from being dynamically updated in response
to network topology changes. An exception is when routes need to be defined to
destinations which, for some reason, will not be learned dynamically via the routing
protocol. If static routes are required, use the BEGINROUTES or GATEWAY
statement in PROFILE.TCPIP to define them.

TCP/IP will treat static routes defined as replaceable on BEGINROUTES as
last-resort routes. These routes can be replaced by dynamic routes. Additionally, if a
static route is replaced with a dynamic route, TCP/IP will always retain knowledge
of the static route and reinstall it if the destination becomes unreachable using
dynamic routes. It is not necessary for TCP/IP to relearn static routes that have
been replaced. For this reason, replaceable static routes can be used with
OMPROUTE as backup routes, that is, a route to use if nothing is found
dynamically.

Another situation where static routes might be required is when multiple, equal-cost
routes to a destination are needed and the RIP routing protocol is being used. This
is due to the fact that, with the exception of directly attached resources, the RIP
protocol will not create multiple, equal-cost routes to a destination. In other words, if
multiple adjacent routers are advertising via RIP that they can reach the same
destination, RIP will add a route to the TCP/IP route table via only one of those
adjacent routers. If it is required that more than one of these routes exist, they
would need to be statically configured using the BEGINROUTES or GATEWAY
statement in PROFILE.TCPIP. If OROUTED is used instead of OMPROUTE,
external entries in the gateways file will be needed. An example of this would be if
in [Figure 33 on page 158} TCPCS4 used the RIP protocol to Router 3.3.3.3 and
Router 8.8.8.8 and if multiple routes were desired to 130.200.0.0 network.

If an installation has multiple interfaces to a directly attached network and it wants
to use one interface for input packets and one for output packets (traffic splitting),
the installation must use static routes. To do this, a static route could be defined for
one and only one interface, forcing all output packets to use that interface. The
other routers on the directly attached network would have to be defined with a
similar static route, but for the other interface. Although this is the easiest way to
implement traffic splitting, if one of the interfaces fails, a host might become
unreachable even though the other physical connection may still exist.

Note: A more robust way of accomplishing traffic splitting is to use dynamic routes
and make one route preferred over the other via the configured interface
costs. See |“Step 5: Defining interface costs (OSPF and RIP)” on page 188|
for more information.

z/OS V1R4.0 CS: IP Configuration Guide

The BSDROUTINGPARMS statement in PROFILE.TCPIP is not used when the
OMPROUTE routing daemon is used. Instead, the interface characteristics,
including subnet mask, are defined in the OMPROUTE configuration file.

Note: If you are using NCPROUTE with OMPROUTE, the BSDROUTINGPARMS
statement is required to route Transport PDUs prior to OMPROUTE
activation. Because the BSDROUTINGPARMS parameters are overridden by
the interface parameters defined in the OMPROUTE configuration, ensure
that the interface parameters for the SNALINK or IP/CDLC channel
connections are identical in the BSDROUTINGPARMS statement and the
OMPROUTE configuration file.

| IPv6 static routing

Static routing requires that routes are configured manually for each router or
destination; this is a significant reason system administrators avoid this technique if
given a choice. Static routing has the disadvantage that network reachability is not
dependent on the state of the network itself. If a destination is down, or
unreachable through a statically configured route, the static routes remain in the
routing table and traffic continues to be sent toward that destination without
success.

To minimize network administrator tasks, configuration of static routes is to be

avoided, especially in a large network. However, certain circumstances make static

routing more appropriate. For example, static routes can be used:

» To define a route that will not be learned dynamically from router advertisements
received from routers

* In conjunction with dynamic routes to provide backup routes

If static routing is used, only the PROFILE.TCPIP data set has to be updated with
BEGINROUTES statements. The only ways to modify static routes are:

* Replace the routing table using the VARY TCPIP,,OBEYFILE command
» Use incoming ICMPv6 redirect packets

 |f a static route is defined on a BEGINROUTES statement as being replaceable,
it can be replaced by a dynamic route

Notes:

1. The first BEGINROUTES statement in PROFILE.TCPIP or a VARY
TCPIP,,OBEYFILE command replaces all static routes in the TCP/IP stack
routing table. Subsequent statements within the same data set append to the
routing table.

2. If you use static routes and want to honor ICMPvV6 redirect messages (that is,
you do not code IPCONFIG6 IGNOREREDIRECTS), then you must code the
first hop address using the link-local address of the router. This is required since
all redirect messages are sent using the router’s link-local address, and if the
source address of the redirect message does not match the address of the first
hop in the routing table, the redirect message will be ignored.

For more information on the VARY TCPIP,,OBEYFILE command, the IPCONFIG6
statement, and the IGNOREREDIRECTS parameter on the IPCONFIG6 statement,
see |z70S Communications Server: IP Configuration Reference]

Replaceable static routes: Since replaceable static routes are intended to be
last-resort routes, TCP/IP only attempts to use them if no dynamic routes to a
destination are available. If a non-replaceable static route fails validation, even if the

Chapter 4. Routing 161

reason for the failure is transient (for example, gateway unreachable), the definition
for the non-replaceable static route is discarded. However, if a replaceable static
route fails validation for a transient reason, the definition of the route is retained.
When there are no dynamic routes to the destination, TCP/IP periodically retries to
add the replaceable static route to the routing table. Because of these periodic
retries, multiple EZZ43481 messages might be seen. Retries are performed at the
most every 30 seconds, as long as there are no active routes to the destination in
the routing table and at least one new route has been added to the routing table
since the last retry. Retries are terminated as soon as a valid route to the
destination is installed into the routing table, whether it is a dynamic, static, or
replaceable static route.

Using static routing with router advertisements

The use of non-replaceable static routes with IPv6 router discovery, when those
routes are to destinations that will be learned through received router
advertisements, is not recommended. Defining these non-replaceable static routes
prevents them from being dynamically updated in response to network topology
changes. Examples of routes that are not learned through router advertisements are
routes for which the destination address is a specific host address and non-default
indirect routes.

TCP/IP treats replaceable static routes as last-resort routes. These routes can be
replaced by dynamic (router discovery) routes. In addition, if a static route is
replaced with a dynamic route, TCP/IP always retains knowledge of the static route
and can reinstall it if the destination becomes unreachable using dynamic routes. It
is not necessary for TCP/IP to relearn static routes that have been replaced. For
this reason, replaceable static routes can be used with IPv6 router discovery as
backup routes, for use if nothing is learned dynamically.

Static routing configuration examples

z/OS TCPCS4

The following sections illustrate static routing configuration examples.

Static route statements for z/0S TCPCS4
BEGINRoutes ;first BEGINRoutes in the profile

Network/mask FirstHop LinkName PacketSize

Route 9.67.106.0/24 = CTCATO7 MTU 1500 sroutel

Route 9.67.105.0/24 = CTC4T08 MTU 1500 ;route?

Route 9.67.101.0/24 = CTC4T03 MTU 1500 ;route3

Route 9.67.108.0/24 = CTC4T02 MTU 1500 srouted

Route 9.67.107.0/24 9.67.106.7 CTC4T07 MTU 1500 srouteb

Route 7.7.7.7/32 9.67.106.7 CTC4T07 MTU 1500 srouteb

Route 9.67.103.0/24 9.67.101.3 CTC4T03 MTU 1500 sroute?

Route 9.67.103.0/24 9.67.106.7 CTC4TO07 MTU 1500 ;route8

Route 30.1.1.0/24 9.67.106.7 CTC4T07 MTU 1500 sroute9

Route 10.1.1.0/24 9.67.108.2 CTC4T02 MTU 1500 srouteld
Route 130.200.0.0/14 9.67.101.3 CTC4T03 MTU 1500 sroutell
Route 130.200.0.0/14 9.67.105.8 CTC4T08 MTU 1500 sroutel2
Route 130.203.0.0/16 9.67.105.8 CTC4T08 MTU 1500 sroutel3
Route DEFAULT 9.67.106.7 CTC4T07 MTU 1500 sroutelsd
Destination/PrefixLen FirstHop Interface PacketSize

Route FE80::1:2:3:3/128 = 0SAQDIO046 MTU 5000 REPL ;routel5
Route FE80::1:2:3:4/128 = 0SAQDI046 MTU 5000 REPL ;routel6
Route FEC0:0:0:A1B::/64 FE80::1:2:3:3 0SAQDIO46 MTU 5000 REPL ;routel7

162 2z/0S V1R4.0 CS: IP Configuration Guide

z/OS TCPCS7

Route FECO:0:0:A1C::/64

Route

DEFAULT6

EndRoutes

FE8O::1:2
FE8O::1:2

Notes:

:3:4 0SAQDIO46
:3:4 0SAQDIO46

MTU 5000 REPL
MTU 5000 REPL

sroutel8
sroutel9

1. In the BEGINROUTES block, the netmask can be specified by a /xx. This
number, denoted by xx, represents the number of significant bits in the netmask.
For example:

/16 = 16 significant bits

11111111 11111111 00000000 00OOOO0O = 255.255.0.0

For IPv6, you must specify the prefix length of the route using the /xxx notation.
2. For direct routes, use an equals symbol (=) for the first hop.

BSDROUTINGPARMS statements for z/0S TCPCS4

BSDRoutingParms TRUE ; Shown only for completeness

5 Linkname MTU
CTC4TO8 1500
CTC4TO7 1500
CTCATO3 1500
CTC4T02 1500
VIPAIA 1500
EndBSDRoutingParms

Static route statements for z/0S TCPCS7
BEGINRoutes

Network/mask

Route
Route
Route
Route
Route
Route
Route
Route
Route
Route
Route
Route
Route

Destination/PrefixLen

9.67.106.0/24
9.67.100.0/24
9.67.102.0/24
9.67.103.0/24
9.67.107.0/24
4.4.4.4/32
10.1.1.0/24
20.1.1.0/24
30.1.1.0/24
130.200.0.0/14
130.200.0.0/14
130.203.0.0/16
DEFAULT

Route FE80::1:2:3:3/128 =

Route FE80::1:2:3:4/128
Route FECO:0:0:A1B::/64
Route FEC0:0:0:A1C::/64

Route

DEFAULT6

EndRoutes

Metric Subnet Mask
0 255.255.255.0
0 255.255.255.0
0 255.255.255.0
0 255.255.255.0
0 255.255.255.252
FirstHop LinkName
= CTC7T04
= CTC7T08
= CTC7T03
= CTC7T06
= CTC7T05
9.67.106.4 CTC7T04
9.67.106.4 CTC7T04
9.67.107.5 CTC7T05
9.67.103.6 CTC7T06
9.67.100.8 CTC7T08
9.67.102.8 CTC7T03
9.67.102.3 CTC7T03
9.67.107.5 CTC7T05
FirstHop Interface
0SAQDIO76
= 0SAQDIO76
FE8O::1:2:3:3 0SAQDIO76
FE80::1:2:3:4 0SAQDIO76
FE8O::1:2:3:4 0SAQDIO76

D

(<}

0
0
0
0

est Address

PacketSize
MTU 1500 sroutel
MTU 1500 sroute?
MTU 1500 sroute3
MTU 1500 srouted
MTU 1500 srouteb
MTU 1500 srouteb
MTU 1500 sroute?/
MTU 1500 sroute8
MTU 1500 sroute9
MTU 1500 sroutel0
MTU 1500 sroutell
MTU 1500 sroutel?
MTU 1500 sroutel3

PacketSize
MTU 5000 REPL ;routel4d
MTU 5000 REPL j;routelb
MTU 5000 REPL ;routel6
MTU 5000 REPL ;routel7
MTU 5000 REPL ;routel8

BSDROUTINGPARMS statements for z/0S TCPCS7
BSDRoutingParms TRUE

3 Linkname MTU
CTC7708 1500
CTC7T03 1500
CTC7T06 1500
CTC7704 1500

Metric Subnet Mask
0 255.255.255.0
0 255.255.255.0
0 255.255.255.0
0 255.255.255.0

Dest Address

(<)

0
0
0

Chapter 4. Routing

163

164

CTC7T05 1500 0 255.255.255.0 0
VIPALA 1500 0 255.255.255.252 0
EndBSDRoutingParms

The sample configuration has an IPv4 supernet route for 130.200.0.0. An IPv4
supernet route means that the netmask for the route is smaller than the class
netmask. In this case, 130.200.0.0 is a class B address. The default netmask for
class B is 255.255.0.0. The netmask used for this sample is 255.252.0.0, which is
less than 255.255.0.0, hence making this a supernet route. In routing, the stack
determines a route that has the most bits in common. Therefore, the stack chooses
a route in the following order:

1. If a route exists to the destination address (a host route), it is chosen.
2. At this point, the route chosen depends upon the version of IP being used:
e For IPv4:

a. If subnet, network, or supernetwork routes exist to the destination, the
route with the most specific network mask (the mask with the most bits
on) is chosen.

b. If the destination is a multicast destination and a multicast default route
exists, that route is chosen.

* For IPvG6, if prefix routes exist to the destination, the route with the most
specific prefix is chosen.

3. Default routes are chosen when no other route exists to a destination.

For example, for TCPCS4 (and when trying to reach 130.200.0.0), route12 in the
list is used, which is the supernet route 130.200.0.0 with mask 255.252.0.0. If
applying the mask of that route, 255.252.0.0, to the destination IP address,
130.200.0.0, the result is 130.200.0.0, which is the IP address of this route. Now,
when trying to reach destination 130.203.5.2, the stack would use route13 in the
list, which is a network route for 130.203.00 with mask 255.255.0.0. If applying the
mask of that route, 255.255.0.0, to the destination IP address, 130.203.5.2, the
result is 130.203.00, which is the IP address of this route.

For TCPCS4, route7 and route8 are examples of equal cost multipath routes to get
to 9.67.103.0 subnet. This means that TCPCS4 has two different routes to get to
this destination. If IPCONFIG MULTIPATH is not enabled, then only route7 will be
used as long as it is active. This is because the stack chooses the first route and
ignores route8. If route7 becomes inactive, then the stack will switch and use
route8. If MULTIPATH is enabled, then the stack will use both routes according to
the MULTIPATH specification.

In the preceding example, all of the IPv4 links have a subnet mask of
255.255.255.0 because this is what is specified for the links in the
BSDROUTINGPARMS. Therefore, to determine the broadcast addresses for link
CTCA4TOS, AND the IP Address, 9.67.101.4, and the subnet mask, 255.255.255.0,
to yield the subnet for this link, 9.67.101.0. Then, OR the subnet, 9.67.101.0, with
the complement of the subnet mask, 0.0.0.255. This determines that the broadcast
address for this link is 9.67.101.255.

For TCPCS4, route15 and route16 would be selected to reach host FE80::1:2:3:3
and host FE80::1:2:3:4 respectively. Route17 and route18 would be selected to
reach any IPv6 address that had the first 64 bits of FEC0:0:0:A1B and
FECO0:0:0:A1C respectively. Route19 would be selected for any other IPv6
destination.

z/OS V1R4.0 CS: IP Configuration Guide

Notes:

1.

All IPv4 IP addresses must follow Classless Inter-Domain Routing (CIDR)
convention that requires the actual mask to be one or more on-bits followed by
zero or more off-bits. On-bits cannot be followed by off-bits followed by on-bits.
Therefore, a mask of 255.255.254.0 is valid (an actual mask of FFFFEQQ), but a
mask of 255.255.253.0 is not valid (an actual mask of FFFFD0O) because 253
is 11111101.

VIPA links or VIPA interfaces are not allowed on BEGINROUTES statements.

You must have a Direct route to a specific IP Address before using that IP
Address as the first-hop for indirect routes. A direct route is a route to a
destination that is directly connected to the stack by an interface. An indirect
route is a route to a destination that is not directly connected, and therefore a
router is used to reach that destination. In the preceeding example, for
TCPCS4, the subnet route for 9.67.101.0 is directly connected to TCPCS4 by
link CTC4T03, and the host route for FE80::1:2:3:3 is directly connected to
TCPCS4 by interface OSAQDIO46. However, the subnet route for 9.67.103.0 is
indirectly connected and the router used to reach that destination is 9.67.106.7
and/or 9.67.101.3, depending on the MULTIPATH definition.

DEFAULT and DEFAULT®6 routes are always indirect routes and therefore must
always have a first hop address specified.

IPv4 dynamic routing

This section describes the following for IPv4:

Routing daemons

Migration from OROUTED to OMPROUTE
Dynamic routing using OMPROUTE
Configuring OSPF and RIP

Routing daemons

Daemon is a UNIX term for a background server process. Daemons are used for
dynamic routing. For z/OS CS IP, there are two routing daemons:

OROUTED

OROUTED is an IP routing daemon that implements RIP Version 1 and RIP
Version 2. It creates and maintains network routing tables. OROUTED
determines if a new route has been established or whether a route is
temporarily unavailable. For more information, see|Appendix E, “Configuring|
the OROUTED server’ on page 769

OMPROUTE

OMPROUTE is an IP routing daemon that supports RIP Version 1, RIP
Version 2, and OSPF protocols. You can send RIP Version 1 or RIP Version
2, but not both at the same time on a single interface. However, you can
configure a RIP interface to receive both versions. OMPROUTE is the
recommended routing daemon application for z/OS CS IP.

Note: OROUTED and OMPROUTE will not run concurrently on the same
TCP/IP stack.

Migration from OROUTED to OMPROUTE

An OROUTED start parameter is available to assist with migration from OROUTED
to OMPROUTE. This function is invoked by specifying ’-c’ on the OROUTED startup
parameters or via the modify command:

Chapter 4. Routing 165

f orouted,parms="'-c'

The ’-¢’ parameter uses OROUTED configuration files and OROUTED’s current
environment (including start parameters and MTU information) to create a file which
can be used to create a sample OMPROUTE configuration file. The generated
sample contains example configuration statements and lists recommended changes
to PROFILE.TCPIP. Refer to the [z20S Communications Server: IP Configuratio
for more details about this start parameter. The file,
CNVROUTED.PROFILE (default name) or the name specified by the customer, will
be put in the /tmp directory for HFS (an MVS data set is not an option). See the
Iz/0S Communications Server: IP Configuration Referencd for a comparison of
OROUTED configuration statements to OMPROUTE configuration statements.

Refer to the [z/0S Communications Server: IP Migratior| for more information on
migrating from OROUTED to OMPROUTE.

Dynamic routing using OMPROUTE

166

OMPROUTE implements the OSPF protocol described in RFC 1583 (OSPF Version
2), the OSPF subagent protocol described in RFC 1850, and the RIP protocols
described in RFC 1058 (RIP Version 1) and in RFC 1723 (RIP Version 2). It
provides an alternative to the static TCP/IP gateway definitions. The MVS host
running with OMPROUTE becomes an active OSPF or RIP router in a TCP/IP
network. Either or both of these routing protocols can be used to dynamically
maintain the host routing table. For example, OMPROUTE can detect when a route
is created, is temporarily unavailable, or if a more efficient route exists. If both
OSPF and RIP protocols are used simultaneously, OSPF routes will be preferred
over RIP routes to the same destination.

Supported protocols

Open Shortest Path First (OSPF): OSPF is classified as an Interior Gateway
Protocol (IGP). This means that it distributes routing information between routers
belonging to a single Autonomous System (AS), a group of routers all using a
common routing protocol. The OSPF protocol is based on link-state or shortest path
first (SPF) technology. It has been designed expressly for the TCP/IP Internet
environment, including explicit support for IP subnetting and the tagging of
externally-derived routing information.

OSPF performs the following tasks:

Multiple routes
Provides support for multiple equal-cost routes.

Authentication
Provides for the authentication of routing updates.

IP multicast
Uses IP multicast when sending or receiving the updates.

Area routing capability
Area routing capability enables an additional level of routing protection and
a reduction in routing protocol traffic.

Allows network grouping
Allows sets of networks to be grouped together. Such a grouping is called
an area. The topology of an area is hidden from the rest of the Autonomous
System. This method of hiding information enables a significant reduction in
routing traffic. Also, routing within the area is determined only by the area’s

z/OS V1R4.0 CS: IP Configuration Guide

own topology, lending the area protection from bad routing data. An area is
a generalization of an IP subnetted network.

IP subnet configuration
Enables the flexible configuration of IP subnets. Each route distributed by
OSPF has a destination and mask. Two different subnets of the same IP
network number may have different sizes (that is, different masks). This is
commonly referred to as variable length subnetting. A packet is routed to
the best (longest or most specific) match. Host routes are considered to be
subnets whose masks are all ones (OxFFFFFFFF).

Authenticate OSPF protocol exchanges
Can be configured such that all OSPF protocol exchanges are
authenticated. This means that only trusted routers can participate in the
Autonomous System’s routing. A single authentication scheme is configured
for each area. This enables some areas to use authentication while others
do not.

OSPF is a dynamic routing protocol. It quickly detects topological changes in the AS
(such as router interface failures) and calculates new loop-free routes after a period
of convergence. This period of convergence is short and involves a minimum of
routing traffic as compared to RIP protocol.

In a link-state routing protocol, each router maintains a database describing the
Autonomous System’s topology. Each participating router has an identical database.
Each individual piece of this database is a particular router’s local state (for
example, the router’s usable interfaces and reachable neighbors). The router
distributes its local state throughout the Autonomous System by flooding.

To generate routes, all routers run the exact same algorithm, in parallel. From the
topological database, each router constructs a tree of shortest paths with itself as
root. This shortest-path tree gives the route to each destination in the Autonomous
System. Externally derived routing information appears on the tree as leaves. When
several equal-cost routes to a destination exist, the routes (up to four) are added to
the TCP/IP stack’s route table. The TCP/IP stack uses these equal-cost routes
according to the IPCONFIG MULTIPATH statement.

Externally derived routing data (for example, routes learned from the RIP protocol)
is passed transparently throughout the Autonomous System. This externally derived
data is kept separate from the OSPF protocol’s link state data. Each external route
can also be tagged by the advertising router, enabling the passing of additional
information between routers on the boundaries of the Autonomous System. For
information on configuring OSPF, see [‘Configuring OSPF and RIP” on page 179,

RIP protocol: RIP is an Interior Gateway Protocol (IGP) designed to manage a
relatively small network. RIP is based on the Bellman-Ford or the distance-vector
algorithm. RIP has many limitations and is not suited for every TCP/IP environment.
Before using the RIP function in OMPROUTE, read RFCs 1058 and 1723 to decide
if RIP can be used to manage the routing tables of your network. Refer to
[Communications Server: IP Configuration Reference|for more information about
RFCs 1058 and 1723.

RIP uses the number of hops, or hop count, to determine the best possible route to
a host or network. The term hop count is also referred to as the metric. In RIP, a
hop count of 16 means infinity, or that the destination cannot be reached. This limits
the longest path in the network that can be managed by RIP to 15 gateways.

Chapter 4. Routing 167

168

A RIP router broadcasts routing information to its directly connected networks every
30 seconds. It receives updates from neighboring RIP routers every 30 seconds
and uses the information contained in these updates to maintain the routing table. If
an update has not been received from a neighboring RIP router in 180 seconds, a
RIP router assumes that the neighboring RIP router is down and sets all routes
through that router to a metric of 16 (infinity). If an update has still not been
received from the neighboring RIP router after another 120 seconds, the RIP router
deletes from the routing table all of the routes through that neighboring RIP router.

RIP Version 2 is an extension of RIP Version 1 and provides the following features:

Route Tags to provide EGP-RIP and BGP-RIP interactions
The route tags are used to separate internal RIP routes (routes for networks
within the RIP routing domain) from external RIP routes, which may have
been imported from an EGP (external gateway protocol) or another IGP.
OMPROUTE does not generate route tags, but preserves them in received
routes and readvertises them when necessary.

Variable subnetting support
Variable length subnet masks are included in routing information so that
dynamically added routes to destinations outside subnetworks or networks
can be reached.

Immediate next hop for shorter paths
Next hop IP addresses, whenever applicable, are included in the routing
information to eliminate packets being routed through extra hops in the
network. OMPROUTE will not generate immediate next hops, but will
preserve them if they are included in the RIP packets.

Multicasting to reduce load on hosts
IP multicast address 224.0.0.9, reserved for RIP Version 2 packets, is used
to reduce unnecessary load on hosts which are not listening for RIP Version
2 messages. This support is dependent on interfaces that are
multicast-capable.

Authentication for routing update security
Authentication keys can be configured for inclusion in outgoing RIP Version
2 packets. Incoming RIP Version 2 packets are checked against the
configured keys.

Configuration switches for RIP Version 1 and RIP Version 2 packets
Configuration parameters allow for controlling which version of RIP packets
are to be sent or received over each interface.

Supernetting support
The supernetting feature is part of Classless InterDomain Routing (CIDR).
Supernetting provides a way to combine multiple network routes into fewer
supernet routes, thus reducing the number of routes in the routing table and
in advertisements.

For configuration information for RIP, see f‘Configuring OSPF and RIP” on page 179|
OMPROUTE configuration

Run-time environment: OMPROUTE is a z/OS UNIX application, and it requires
the Hierarchical File System (HFS) to operate. It can be started from an MVS
started procedure, from the z/OS shell, or from AUTOLOG (see
iconsiderations for OMPROUTE” on page 172|for restrictions on using AUTOLOG to
start OMPROUTE). OMPROUTE must be started by an RACF-authorized user ID,
and it must reside in an APF authorized library.

z/OS V1R4.0 CS: IP Configuration Guide

OMPROUTE uses the MVS operator’s console, SYSLOGD, CTRACE, and
STDOUT for its logging and tracing. The MVS operator’s console and SYSLOGD
are used for major events such as initialization, termination, and error conditions.
CTRACE is used for tracing the receipt and transmission of OSPF/RIP packets as
well as communications between OMPROUTE and the TCP/IP stack. STDOUT is
used for detailed tracing and debugging.

OMPROUTE uses a standard message catalog. The message catalog must be in
the HFS. The directory location for the message catalog path is set by the
environment variables NLSPATH and LANG.

Configuration of OMPROUTE is via an OMPROUTE configuration file. For details
on the statements in the OMPROUTE configuration file, refer to
|Communications Server: IP Configuration Reference]

Display of OMPROUTE information is performed using the DISPLAY command.
Modification of OMPROUTE information is performed using the MODIFY command.
For details on OMPROUTE'’s DISPLAY and MODIFY commands, refer to the 2209
[Communications Server: IP System Administrator’s Commands|

Multiple TCP/IP stacks: A one-to-one relationship exists between an instance of
OMPROUTE and a stack. OSPF/RIP support on multiple stacks requires multiple
instances of OMPROUTE. OMPROUTE and OROUTED cannot run on the same
stack concurrently.

TCP/IP stack routing table management: OMPROUTE’s job is limited to the
management of the TCP/IP stack routing table. OMPROUTE is not involved in the
actual routing decisions made by the TCP/IP stack when routing a packet to its
destination.

All dynamic routes are deleted from the stack’s routing table upon initialization of
OMPROUTE. OMPROUTE then repopulates the stack routing table using
information learned via the routing protocols.

ICMP Redirects are ignored when OMPROUTE is active.

Unlike OROUTED, OMPROUTE does not make use of the BSDROUTINGPARMS
statement. Instead, the Maximum Transmission Unit (MTU), subnet mask, and
destination address parameters are configured via the OSPF_INTERFACE,
RIP_INTERFACE, and INTERFACE statements in the OMPROUTE configuration
file.

Using RIP and OSPF with OMPROUTE: When OMPROUTE is initialized, it uses
the OMPROUTE configuration file to determine which routing protocols will be
enabled. If at least one OSPF interface is configured, the OSPF protocol is enabled.
If at least one RIP interface is configured, RIP is enabled. If OMPROUTE is started
with no interfaces defined for a particular protocol, that protocol is disabled until one
of the following occurs:

+ OMPROUTE is stopped and restarted with a configuration file containing at least
one interface of the specific type.

« OMPROUTE is dynamically reconfigured via the MODIFY command with a
configuration file containing at least one interface of the specific type.

When OMPROUTE is configured for both the OSPF and RIP protocols, routes that
are learned through the OSPF protocol take precedence over routes learned
through the RIP protocol.

Chapter 4. Routing 169

170

The OSPF and RIP protocols are communicated over interfaces that are defined
with the OSPF_INTERFACE and RIP_INTERFACE configuration statements,
respectively. An interface involved in the communication of neither the RIP nor the
OSPF protocol should be configured to OMPROUTE via the INTERFACE
configuration statement. For non-point-to-point interfaces, an INTERFACE statement
is required only to change the default values used by OMPROUTE (for example, to
change the default MTU.) OMPROUTE supports a total of 254 interfaces (physical
and VIPA). Refer to |“VIPA interfaces (Static VIPA and Dynamic VIPA)” on page 185|
for special VIPA considerations.

OMPROUTE allows for the generation of multiple, equal-cost routes to a
destination. For OSPF and RIP, up to four multiple equal-cost routes are allowed.
For RIP, multiple equal-cost routes are supported only to directly connected
destinations over redundant interfaces.

Special considerations:

Token-ring multicast: If OMPROUTE will be communicating through the OSPF or
RIP Version 2 protocol over a token ring media, and there will be routers attached
to that token ring that are not listening (at the DLC layer) for the token ring multicast
MAC address 0xC000.0004.0000, the following TRANSLATE statement is required
in the PROFILE.TCPIP:

TRANSLATE 224.0.0.0 IBMTR FFFFFFFFFFFF 1linkname

Without this statement, OSPF and RIP Version 2 multicast packets are discarded at
the DLC layer by those routers that are not listening for the token ring multicast
MAC address.

Virtual IP Addresses (VIPA): OMPROUTE is enhanced with Virtual IP Addressing
(VIPA) to handle network interface failures by switching to alternate paths. The VIPA
routes are included in the OSPF and RIP advertisements to adjacent routers.
Adjacent routers learn about VIPA routes from the advertisements and can use
them to reach the destinations at the MVS host.

Service policy: If service policy is going to be used to restrict access to neighbors
on point-to-multipoint interfaces (for example MPCPTP interfaces including XCF and
IUTSAMEH connections) for temporary intervals, those neighbors must be explicitly
defined on the OSPF_INTERFACE or RIP_INTERFACE statement. Otherwise,
OMPROUTE might not be able to communicate with those neighbors when the
access restriction expires.

Multiple equal-cost routes: When IPCONFIG MULTIPATH is specified in
PROFILE.TCPIP and multiple routes exist in the TCP/IP route table for a
destination, outbound traffic for that destination will be spread across all of the
routes. This traffic spreading will be done on either a packet-basis or
connection-basis depending on the parameter specified on IPCONFIG MULTIPATH.
When OMPROUTE is being used to provide dynamic routing for a TCP/IP stack,
multiple routes to the same destination can be dynamically added to the TCP/IP
stack’s route table, based upon the routing information learned from other routers.
These multiple routes will be added when the route calculation for each has
resulted in the same route cost value. No more than four equal-cost routes will be
added for each destination. For RIP, multiple equal-cost routes will be added only to
directly-connected destinations over redundant interfaces. The RIP protocol will
generate no more than one indirect route to a destination.

z/OS V1R4.0 CS: IP Configuration Guide

Table 10. Multipath route limitations

Multipath route type |BEGINROUTES OMPROUTE (OSPF) |OMPROUTE (RIP)
(Static)

Direct Host Yes (no limit) Yes (up to 4) No

Indirect Host Yes (no limit) Yes (up to 4) No

Direct Network Yes (no limit) No Yes (up to 4 for

redundant interfaces)

Indirect Network Yes (no limit) Yes (up to 4) No

Default (Indirect) Yes (no limit) Yes (up to 4) No

Note: Because of the design limitation for multi-access parallel interfaces support,

OMPROUTE(OSPF) cannot provide multiple equal-cost network routes that
are directly attached to parallel interfaces. However, circumvention would be
to define these direct network routes statically in the TCPIP profile using a
GATEWAY or BEGINROUTES statement. OMPROUTE will recognize these
routes as static equal-cost multipath routes. Also, if more than four
equal-cost multipath routes are desired for OSPF or if multiple equal-cost
indirect routes are desired for RIP, use the GATEWAY or BEGINROUTES
statement.

Configuring OMPROUTE
The steps to configure OMPROUTE are:

1.

Al A

1

©C 0o x®»~NO

Create the OMPROUTE configuration file.

Reserve the RIP UDP port (if using the RIP protocol).
Update the resolver configuration file.

Update the OMPROUTE cataloged procedure.

Specify the RIP UDP port number in the SERVICES file or data set (if using
the RIP protocol).

RACF authorize user IDs for starting OMPROUTE.

Start syslogd.

Update the OMPROUTE environment variables (optional).
Create static routes (optional).

Configure OSPF Authentication

These steps are described in the following sections.

Step 1: Create the OMPROUTE configuration file: The OMPROUTE
configuration file provides information about the host’s routing capabilities and
TCP/IP interfaces. See[‘Configuring OSPF and RIP” on page 179 for more detail
about the contents of this file. The following is the search order used by
OMPROUTE to locate the configuration data set or file:

1.

2.
3.

If the environment variable, OMPROUTE_FILE, has been defined, OMPROUTE
uses the value as the name of an MVS data set or HFS file to access the
configuration data. The syntax for an MVS data set name is
//mvs.dataset.name. The syntax for an HFS file name is
/dir/subdir/file.name.

/etc/omproute.conf

hlg.ETC.OMPROUTE.CONF

Chapter 4. Routing 171

172

A sample configuration file is provided in SEZAINST(EZAORCFG). The
configuration file for TCPCS4, TCPCS6, and TCPCS7 in the sample network are
shown in ['Sample OMPROUTE configuration files” on page 202| For a description
of the syntax rules for the OMPROUTE configuration file, as well as details on each
of the configuration statements, refer to the|z/OS Communications Server: IH
[Configuration Reference,

Step 2: Reserve the RIP UDP port (If using the RIP protocol): If the RIP
protocol of OMPROUTE is going to be used, UDP port 520 should be reserved for
OMPROUTE. This is done by adding the name of the member containing the
OMPROUTE cataloged procedure to the PORT statement in PROFILE.TCPIP:

PORT
520 UDP OMPROUTE

If you want to be able to start OMPROUTE from the z/OS shell, use the special
name OMVS as follows:

PORT
520 UDP OMVS

Autolog considerations for OMPROUTE: As discussed in|z/OS Communications
[Server: IP Configuration Referencd, if a procedure in the AUTOLOG list also has a
PORT statement reserving a TCP or UDP port but does not have a listening
connection on that port, TCP/IP periodically attempts to cancel that procedure and
start it again.

Therefore, if OMPROUTE is being started with AUTOLOG and only the OSPF
protocol is being used (no RIP protocol and, therefore, no listening connection on
the RIP UDP port), it is important to do one of the following:

* Ensure that the RIP UDP port (520) is not reserved by the PORT statement in
the PROFILE.TCPIP.

* Add the NOAUTOLOG parameter to the PORT statement in the PROFILE.TCPIP.
For example,

PORT
520 UDP OMPROUTE NOAUTOLOG

Note: When using only the OSPF protocol, the auto-start feature of AUTOLOG can
be used as described above. However, the monitoring and auto-restart
features of AUTOLOG are unavailable due to AUTOLOG’s dependence on a
listening TCP or UDP connection, which does not exist with OSPF.

If you fail to take one of the above actions, OMPROUTE will be periodically
canceled and restarted by TCP/IP.

Step 3: Update the resolver configuration file: The resolver configuration file
contains keywords (DATASETPREFIX and TCPIPjobname) used by OMPROUTE.
The value assigned to DATASETPREFIX will determine the high-level qualifier (hlg).
The hlq is used in the search order for the OMPROUTE configuration file. If no
DATASETPREFIX keyword is found, a default of TCPIP is used. The value
assigned to TCPIPjobname will be used as the name of the TCP/IP stack with
which OMPROUTE establishes a connection.

For a description of the search order used by the resolver to locate the resolver
configuration file, see [‘Resolver configuration files” on page 27}

Step 4: Update the OMPROUTE cataloged procedure: |f OMPROUTE is to be
started by a procedure, create the cataloged procedure by copying the sample in

z/OS V1R4.0 CS: IP Configuration Guide

SEZAINST(OMPROUTE) to your system or recognized PROCLIB. Specify
OMPROUTE parameters and change the data set names to suit your local
configuration.

/1%

//* TCP/IP for MVS
//* SMP/E Distribution Name: EZBORPRC

/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%

5647-A01 (C) Copyright IBM Corp. 1998.

Licensed Materials - Property of IBM

This product contains "Restricted Materials of IBM"
A1l rights reserved.

US Government Users Restricted Rights -

Use, duplication or disclosure restricted by

GSA ADP Schedule Contract with IBM Corp.

See IBM Copyright Instructions.

//OMPROUTE PROC
//OMPROUTE EXEC PGM=OMPROUTE,REGION=4096K,TIME=NOLIMIT,
// PARM=('POSIX(ON)',

//
/1%

'ENVAR("_CEE_ENVFILE=DD:STDENV")/")

//* Example of start parameters to OMPROUTE:

/1%

/1% PARM=('POSIX(ON) ',

/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
//STDENV
//
/1%
/1%
/1%
/1%
/1%
/1%
/1%

"ENVAR("_CEE_ENVFILE=DD:STDENV")/-t1")

Provide environment variables to run with the
desired stack and configuration. As an example,
the file specified by STDENV could have these
four Tines in it:

RESOLVER _CONFIG=//'SYS1.TCPPARMS (TCPDATA2)'
OMPROUTE_FILE=/u/usernnn/config.tcpcs2
OMPROUTE_DEBUG_FILE=/tmp/1ogs/omproute.debug
OMPROUTE_DEBUG_CONTROL=1000,5

For information on the above environment variables,
refer to the IP CONFIGURATION GUIDE.

DD PATH='/u/usernnn/envcs2',
PATHOPTS=(ORDONLY)

The stdout stream may be redirected to a HFS file as
shown below.

The PATHOPTS OTRUNC option will clear the stdout file
every time OMPROUTE is started. If you want to retain
previous stdout information, change it to OAPPEND.

//SYSPRINT DD SYSQUT==*
//*SYSPRINT DD PATH='/tmp/omproute.stdout',

/1*

/1%

/1*

/1%

/1%

/1*

/1%

/1*

/1%
//SYSOUT
//%SYSOUT
/1%

/1%

/1%
//CEEDUMP

PATHOPTS=(OWRONLY,0CREAT,0TRUNC) ,
PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

The stderr stream may be redirected to a HFS file as
shown below.

The PATHOPTS OTRUNC option will clear the stderr file
every time OMPROUTE is started. If you want to retain
previous stderr information, change it to OAPPEND.

DD SYSOUT=+

DD PATH='/tmp/omproute.stderr',
PATHOPTS=(OWRONLY,0CREAT,0TRUNC) ,
PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Chapter 4. Routing

173

174

Step 5: Specify the RIP UDP port number in the SERVICES file or data set (If
using the RIP protocol): The services file contains the relationship between
services and port numbers as described in [z70S Communications Server: IP
[Configuration Reference The portion of the services file relevant to OMPROUTE is:

route 520/udp router routed

The file must exist for the RIP protocol of OMPROUTE to operate.

For a description of the search order used to locate the services file, see
FConfiguration files for TCP/IP applications” on page 26|

Step 6: RACF authorize user IDs for starting OMPROUTE: To reduce risk of an
unauthorized user starting OMPROUTE and affecting the contents of the routing
table, users who start OMPROUTE must be RACF-authorized to the entity
MVS.ROUTEMGR.OMPROUTE and require a UID of zero. To RACF-authorize, the
following commands must be entered from a RACF user ID, substituting the
authorized user ID on the ID (userid) parameter. The commands in the following
example are taken from SEZAINST(EZARACF).

RDEFINE OPERCMDS (MVS.ROUTEMGR.OMPROUTE) UACC(NONE)

PERMIT MVS.ROUTEMGR.OMPROUTE ACCESS(CONTROL) CLASS(OPERCMDS) ID(userid)
SETROPTS RACLIST(OPERCMDS) REFRESH

Note: OMPROUTE requires UID=0 for correct installation, configuration, and
operation.

Step 7: Start syslogd: To write only the urgent OMPROUTE messages to the
z/OS console, syslogd should be running while OMPROUTE is running. Syslogd
sends the non-urgent messages to the HFS message log.

Step 8: Update the OMPROUTE environment variables (Optional): The
following environment variables are used by OMPROUTE and can be tailored to a
particular installation:

RESOLVER_CONFIG
The RESOLVER_CONFIG variable is used by OMPROUTE to locate the
resolver configuration file. For more information on OMPROUTE'’s use of
the resolver configuration file, see [‘Step 3: Update the resolver
iconfiguration file” on page 172| For more information about the
RESOLVER_CONFIG environment variable, refer to|z/0S UNIX System
[Services Planning

OMPROUTE_FILE
The OMPROUTE_FILE variable is used by OMPROUTE in the search
order for the OMPROUTE configuration file. For details on the search order

used for locating this configuration file, see [‘Step 1: Create the
MPROUTE configuration file” on page 171
OMPROUTE_OPTIONS
The OMPROUTE_OPTIONS variable is used by OMPROUTE to set various

controls for OMPROUTE processing. Currently only the hello_hi option is
supported. The syntax of this new variable is:

OMPROUTE_OPTIONS=hello_hi

Specifying OMPROUTE_OPTIONS=hello_hi changes the way OMPROUTE

processes the OSPF Hello packets. These packets are then given a higher

priority than other updates and processed by the first available OMPROUTE
task ahead of other received packets. Prior to specifying this parameter,

z/OS V1R4.0 CS: IP Configuration Guide

customers must be cognizant of the impact to their network of processing
hello packets out of the received order sequence.

Note: Specifying OMPROUTE_OPTIONS=hello_hi only helps to keep
adjacencies up when OMPROUTE is running and getting flooded
with protocol packets. It does not provide any help for the case when
adjacencies are not staying up because OMPROUTE is not getting
enough cycles (that is, swapped out or running in too low a priority).

OMPROUTE_DEBUG_FILE
The OMPROUTE_DEBUG_FILE variable is used by OMPROUTE to
override the debug output destination. For more information on using this
environment variable, see |“OMPROUTE parameters” on page 177l

OMPROUTE_DEBUG_FILE_CONTROL
The OMPROUTE_DEBUG_FILE_CONTROL variable is used by
OMPROUTE to control the size and quantity of trace files created when the
OMPROUTE_DEBUG_FILE variable is specified. The syntax of this variable
is:

OMPROUTE_DEBUG_FILE_CONTROL=<size of file>,<num of files>

The default values for <size of file> and <num of files> are 200 (kilobytes)
and 5 respectively. In general, these values are sufficient for most
installations.

Step 9: Create static routes (Optional): OMPROUTE does not use the
environment variable GATEWAYS_FILE to initialize static routes. To create static
routes, use the BEGINROUTES or GATEWAY statement in PROFILE.TCPIP. For
information on the syntax of these statements, see [zZ0S Communications Server]
[IP Configuration Reference|

During initialization, OMPROUTE learns of static routes by reading the internal
routing table set up by TCP/IP. If static routes are changed during execution by
VARY TCPIP, OBEYFILE statements, OMPROUTE is dynamically notified of the
changes by TCP/IP. OMPROUTE will advertise active static routes to other routers
if allowed by configuration (for example, the IMPORT_STATIC_ROUTES parameter
of the AS_BOUNDARY_ROUTING configuration statement).

Static routes can be defined as replaceable or nonreplaceable, with nonreplaceable
being the default. A nonreplaceable static route cannot be replaced or modified by
OMPROUTE, even if a better dynamic route can be learned and even if the static
route is not actually available (but a static route that is not available will not be
advertised by OMPROUTE). Because of this, the use of nonreplaceable static
routes with OMPROUTE is not recommended unless it is to provide routing over an
interface over which no routing protocol is being communicated. A replaceable static
route will be replaced by OMPROUTE if it dynamically learns of any other route to
the destination. Any dynamically learned route will be considered more desirable
than a replaceable static route. A replaceable static route should be considered as a
last resort route, to be used by TCP/IP when no dynamic route to a destination can
be found. Refer to[‘Using static routing with OMPROUTE” on page 160|for detailed
information.

Step 10: Configure OSPF authentication: OMPROUTE supports defining the
OSPF authentication type by area or by interface. All interfaces attached to an area
default to the type of authentication defined for that area on the AREA configuration
statement, unless overridden on the OSPF_INTERFACE configuration statement.
The values of authentication keys must be defined on OSPF_INTERFACE

Chapter 4. Routing 175

176

statements in any case. All routers which could become neighbors of each other
must use the same authentication type and key, or OSPF communication between
the routers will not be possible.

Virtual links behave similarly to interfaces for authentication purposes. A virtual link
will default to use the same type of authentication that is specified for the backbone
area unless overridden on the VIRTUAL_LINK configuration statement. When the
authentication type is not NONE, the value of the authentication key must be
specified on the VIRTUAL_LINK configuration statement. There is no requirement
for a virtual link to have the same authentication key value as its underlying real
interface.

OSPF authentication does not protect the contents of an OSPF packet. These
packets are not encrypted. However, it does provide verification that the packet is
genuine.

There are two methods of OSPF authentication: password, and MD5 cryptographic.
Password authentication is very basic: an 8-byte password is appended to all OSPF
packets and sent in the clear with the rest of the packet. If the sent password
matches that defined by the packet receiver, the packet is accepted. MD5
authentication is more sophisticated. The combination of the OSPF packet and the
MD5 key is summarized into a 16-byte message digest, which is appended to the
packet and sent. The keys are never sent, only the message digests. The receiver
then attempts to recreate the message digest from the combination of its defined
key and the OSPF packet. If the digest is successfully recreated, the packet is
accepted, otherwise it is rejected. MD5 authentication also contains a monotonic
increasing counter to protect against replay attacks.

If MD5 cryptographic authentication is being used, a 16-byte MD5 key must be
defined on the OSPF_INTERFACE configuration statement. This key is defined as a
hexadecimal string and may be obtained in several ways. One method for obtaining
MD5 keys is provided in the pwtokey utility, which converts a password into an MD5
key. This Unix System Services utility implements the algorithm defined in RFC
2574. Since OSPF does not support localization of keys, it is only necessary to
provide a password to this utility to generate a single, 16-byte key. If multiple sites
have this utility, MD5 keys can easily be generated from passwords, which are
easier to remember and communicate than 16 byte hexadecimal strings.

Starting and controlling OMPROUTE

After the necessary RACF authorization has been defined (see f‘Step 6: RACIE|
fauthorize user IDs for starting OMPROUTE” on page 174), OMPROUTE can be
started from an MVS procedure, from the z/OS shell, or from AUTOLOG.

Note: When OMPROUTE is taken down, it should be kept down for at least 3
times the largest dead router interval of the interfaces using MD5
authentication. The same applies to routers adjacent to interfaces using MD5
authentication. Do not stop and start OMPROUTE instantly.

* You can start OMPROUTE from the MVS operators console by starting the
OMPROUTE start procedure. A sample start procedure is provided with the
product in hlq.SEZAINST(OMPROUTE).

* You can start OMPROUTE from the z/OS shell by starting OMVS and then
issuing the OMPROUTE command and, optionally, any parameters. For
information on parameters, see |“OMPROUTE parameters” on page 177|.

z/OS V1R4.0 CS: IP Configuration Guide

* You can use the AUTOLOG statement to start OMPROUTE automatically during
TCP/IP initialization. Insert the name of the OMPROUTE start procedure in the
AUTOLOG statement of the PROFILE.TCPIP data set.

AUTOLOG

OMPROUTE
ENDAUTOLOG

Note: For special considerations when using AUTOLOG to start OMPROUTE,
see ['‘Autolog considerations for OMPROUTE” on page 172

In a Common INET environment, OMPROUTE will attempt to connect to a stack
whose name is determined by the TCPIPjobname keyword from the resolver
configuration data set or file. In configurations with multiple stacks, a copy of
OMPROUTE must be started for each stack that requires OMPROUTE services. To
associate OMPROUTE with a particular stack, use the environment variable
RESOLVER_CONFIG to point to the data set or file that defines the unique
TCPIPjobname.

When running from an MVS procedure, the environment variables can be set by
using the STDENV DD statement in the OMPROUTE procedure. For information
concerning the environment variables used by OMPROUTE, refer to
[Communications Server: IP Configuration Referencel

OMPROUTE parameters: OMPROUTE accepts three command line parameters,
which govern tracing and debug information. OMPROUTE'’s trace and debug
information is written to stdout with two exceptions:

* When the routing application was started with no tracing, and then a MODIFY
command is issued to enable tracing. In this case, the output destination defaults
to the file omproute_debug in the current temporary directory (the default is
/tmp).

* When the debug output destination has been overridden via the use of an
environment variable (OMPROUTE_DEBUG_FILE).

If OMPROUTE is to be started from an MVS procedure, add your parameters to
PARM=() in the OMPROUTE cataloged procedure. For example:

//* PARM=("POSIX(ON)"',

/1* "ENVAR("_CEE_ENVFILE=DD:STDENV")/-t1')

/1%

If OMPROUTE is to be started from a z/OS shell command line, enter the
parameters on the command line.

For either method of starting OMPROUTE, parameters can be specified in mixed
case.

Note: Use of the -in, -dn, and -sn parameters affects OMPROUTE performance
and might require increasing the Dead_Router_Interval on OSPF interfaces
to keep neighbor adjacencies from collapsing.

The -tn command line parameter: The -tn option specifies the external tracing
level, where n is a supported trace level. It is intended for customers, testers,
service, or developers, and provides information on the operation of the routing
application. This option can be used for many purposes, such as debugging a
configuration, education on the operation of the routing application, verification of
test cases, and so on. The following levels are supported:

Chapter 4. Routing 177

178

1 Informational messages

2 Formatted packet trace

These option levels are cumulative—level 2 includes level 1. For example, -t2
provides formatted packet trace and informational messages.

The -dn and -sn command line parameters: These options specify the internal
debugging levels. They are intended for service and provide internal debugging
information needed for debugging problems. Use of these parameters can
significantly impact performance and are not recommended unless needed to debug
a problem. For more information about the use of these parameters, refer to
[Communications Server: IP Diagnosis,

Controlling OMPROUTE: You can control OMPROUTE from the operator’s
console using the MODIFY command. The syntax of the MODIFY command can be
found in [zZ0S Communications Server: IP System Administrator’s Commands.
MODIFY commands are available to perform the following functions:

* |“Stopping OMPROUTE’|

+ [‘Rereading the configuration file”|

+ [“Enabling or disabling the OMPROUTE subagent” on page 179
+ [‘Changing the cost of OSPF links” on page 179|

+ [‘Controlling OMPROUTE tracing and debugging” on page 179

Stopping OMPROUTE: OMPROUTE can be stopped in several ways:
* From MVS, issue STOP <procname> or MODIFY <procname>,KILL.

If OMPROUTE was started from a cataloged procedure, procname is the
member name of that procedure. If OMPROUTE was started from the z/OS shell,
prochame is useridX, where X is the sequence number set by the system. To
determine the sequence number, from the SDSF LOG window on TSO, issue /d
omvs,u=userid. This will show the programs running under this user ID. The
procname can also be set using the environment variable _BPX_JOBNAME and
then starting OMPROUTE in the shell background.

* From a z/OS shell superuser ID, issue the kill command to the process ID (PID)
associated with OMPROUTE. To determine the PID, use one of the following
methods:

— From the MVS console, issue D OMVS,U=userid, or issue /D OMVS,U=userid
at the SDSF LOG window on TSO (where userid is the user ID that started
omproute from the shell).

— Issue the ps -ef command from the z/OS shell.

— Record the PID when you start OMPROUTE.

For information on the environment variable _ BPX_JOBNAME, refer to|z/0OS UNI
|System Services Planning, For information on the D OMVS,U=userid command,
refer t0|z/0S MVS System Commands

Rereading the configuration file: The MODIFY <procname>,RECONFIG command
is used to reread the OMPROUTE configuration file. This command ignores all
statements in the configuration file except new OSPF_INTERFACE,
RIP_INTERFACE, and INTERFACE statements. These new configuration
statements must be reread from the configuration file through this command prior to
the interface being configured to the TCP/IP stack.

z/OS V1R4.0 CS: IP Configuration Guide

Enabling or disabling the OMPROUTE subagent: Use the MODIFY
<procname>,ROUTESA=ENABLE command or the MODIFY
<procname>,ROUTESA=DISABLE command to enable or disable the OMPROUTE
subagent.

Note: To change any other value on the ROUTESA_CONFIG statement, the
OMPROUTE application must be recycled.

The OMPROUTE subagent implements RFC 1850 for the OSPF Protocol. The
ROUTESA_CONFIG statement is used in the OMPROUTE configuration file to
configure the OMPROUTE subagent. For details on ROUTESA_CONFIG, refer to
lz/0S Communications Server: IP Configuration Reference,

Changing the cost of OSPF links: The cost of an OSPF interface can be
dynamically changed using the MODIFY
<procname>,0SPF,WEIGHT,NAME=<if_name>,COST=<cost> command. This new
cost is flooded quickly throughout the OSPF routing domain, and modifies the
routing immediately.

The cost of the interface reverts to its configured value whenever the router is
restarted. To make the cost change permanent, you must reconfigure the
appropriate OSPF_INTERFACE statement in the configuration file.

Controlling OMPROUTE tracing and debugging: The following commands are
used to start, stop, or change the level of OMPROUTE tracing and debugging:

* MODIFY <procname>, TRACE=n : for OMPROUTE tracing; n can be 0-2
* MODIFY <procname>,DEBUG=n : for OMPROUTE debugging; n can be 0—4

* MODIFY <procname>,SADEBUG=n : for OMPROUTE subagent debugging; n
can be O or 1

Note: Use of OMPROUTE tracing and debugging affects OMPROUTE
performance and might require increasing the Dead_Router_Interval on
OSPF interfaces to keep neighbor adjacencies from collapsing.

Configuring OSPF and RIP
The steps for configuring OSPF and RIP are:
Setting the OSPF router ID (If OSPF protocol is used)
Defining OSPF areas (If OSPF protocol is used)
Limiting information exchange between OSPF areas (If OSPF protocol is used)
Defining interfaces (OSPF and RIP)
Defining interface costs (OSPF and RIP)
Configuring Virtual Links (If OSPF protocol is used)
Managing high-cost links (If OSPF protocol is used)
Defining filters (If RIP protocol is used)

Defining route precedence in a MultiProtocol environment (If OSPF protocol is
used)

Step 1: Setting the OSPF router ID (If OSPF protocol is used)
Every router in an OSPF Autonomous System must be assigned a unique router ID.
The ROUTERID configuration statement should be coded within the OMPROUTE
configuration file to assign the router ID. The value must be one of the
OSPF_INTERFACEs defined in the OMPROUTE configuration file. If the
ROUTERID configuration statement is not coded, OMPROUTE chooses the IP

© © N oo r~ DN~

Chapter 4. Routing 179

180

address from one of the OSPF_INTERFACE statements as the router ID. With the
advent of Dynamic VIPAs (DVIPAs) that can move between z/OS hosts within a
sysplex, it is highly recommended that the ROUTERID be a physical interface or a
static VIPA, not a Dynamic VIPA.

In the example network shown in |Figure 33 on page 158|, the ROUTERID is set to
the static VIPA address that represents each OMPROUTE router. TCPCS4 has
ROUTERID=4.4.4.4, and TCPCS7 has ROUTERID=7.7.7.7.

Step 2: Defining OSPF areas (If OSPF protocol is used)

The sample network shown in [Figure 33 on page 158| depicts a network divided
using two different methods. The first division is between IP subnetworks within the
OSPF Autonomous System (AS) and IP subnetworks external to the OSPF AS
(those within the RIP AS). The subnetworks included within the OSPF AS are
further subdivided into regions called areas. OSPF areas are collections of
contiguous IP subnetworks. The function of areas is to reduce the OSPF overhead
required to compute routes to destinations in different areas. Overhead is reduced
because less information is exchanged and stored by routers and because fewer
CPU cycles are required for a less complex route table calculation.

Every OSPF AS must have at least a backbone area. The backbone is always
identified by area number 0.0.0.0. For small OSPF networks, the backbone is the
only area required. For larger networks with multiple areas, the backbone provides
a core that connects the areas. Unlike other areas, the backbone’s subnets can be
physically separate. In this case, logical connectivity of the backbone is maintained
by configuring virtual links between backbone routers across intervening
non-backbone areas. See|[‘Step 6: Configuring Virtual Links (If OSPF protocol i
lused)” on page 189 for more information on this subject.

Routers that attach to more than one area function as Area Border Routers. All Area
Border Routers are part of the backbone, so they must either attach directly to a
backbone IP subnet or be connected to another backbone router over a virtual link.

The information and algorithms used by OSPF to calculate routes vary according to
whether the destination is within the same area, in a different area within the OSPF
AS, or external to the OSPF AS. Every router maintains a database of all links
within its area. A shortest path first algorithm is used to calculate the best routes to
destinations within the area from this database. Routes between areas are
calculated from summary advertisements originated by Area Border Routers for
destinations located in other areas of the OSPF AS. External routes (for example,
routes to destinations that lie within a RIP AS) are calculated from AS External
advertisements originated by AS Boundary Routers and flooded throughout the
OSPF AS.

Use the AREA configuration statement to define the areas to which a router

attaches. If you do not use the AREA statement, the default is that all OSPF
interfaces attach to the backbone area. In the sample network, TCPCS4 and
TCPCS7 are both Area Border Routers belonging to both the backbone area
(0.0.0.0) and area 1.1.1.1.

AREA
Area_Number=0.0.0.0;

AREA
Area_Number=1.1.1.1;

z/OS V1R4.0 CS: IP Configuration Guide

Step 3: Limiting information exchange between OSPF areas (If

OSPF protocol is used)
When Area Border Routers are configured, parameters on the AREA and RANGE

configuration statements can be used to control the OSPF route information that
crosses the area boundary. For recommendations regarding the usefulness of
multiple areas in the z/OS CS environment, refer to ['‘Network design considerations|
with z/OS CS” on page 193

One option is to use the AREA statement to define an area as a stub area. AS
External advertisements are never flooded into stub areas. In addition, the AREA
statement has an option to suppress origination into the stub of summary
advertisements for interarea routes. Destinations external to the stub area are still
reachable due to the Area Border Routers advertising default routes into stub areas.
Traffic within the stub area for unknown destinations is forwarded to the Area
Border Router (using the default route). The border router uses its more complete
routing information to forward the traffic on an appropriate path toward its
destination.

The following requirements must be met for an area to be defined as a stub area:

* No virtual links are configured through the area to maintain backbone
connectivity.

» |t is acceptable for routers within the area to use a default route for traffic
destined outside the AS.

* No routers within the area are AS boundary routers (OSPF routers that advertise
routes from external sources as AS External advertisements).

The following AREA statement example meets these requirements:

AREA
Area_Number=2.2.2.2
Stub_area=Yes
Import_Summaries=No;

Another option is to use IP subnet address ranges to limit the number of summary
advertisements originated into an area. A range is defined by an IP address and an
address mask. Destinations are considered to fall within the range if the destination
address and the range IP address match after the range mask has been applied to
both addresses.

When a range is configured for an area at an Area Border Router, the border router
suppresses summary advertisements for destinations within that area that fall within
the range. The suppressed advertisements would have been originated into the
other areas to which the border router attaches. Instead, the Area Border Router
may originate a single summary advertisement for the range or no advertisement at
all, depending on the option chosen with the RANGE configuration statement.

Notes:

1. If the range is not advertised, there will be no interarea routes for any
destination that falls within the range.

2. Ranges cannot be used for areas through which virtual links are configured to
maintain backbone connectivity.

In the sample network shown in|Figure 33 on page 158|, the following RANGE
statement could be configured on TCPCS7 to prevent TCPCS7 from advertising
destinations in the 9.67.101.0 subnet into the backbone area (Area 0.0.0.0):

Chapter 4. Routing 181

182

RANGE
IP_Address=9.67.101.0
Subnet_Mask=255.255.255.0
Area_Number=1.1.1.1
Advertise=No;

Step 4: Defining interfaces (OSPF and RIP)

Each interface in use by the stack should be defined to OMPROUTE using an
OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE statement. This section
describes the differences between interface types that you should consider when
configuring interfaces to OMPROUTE. In general, use the following guidelines:

* An interface over which the OSPF protocol is communicated with other routers
must be configured with the OSPF_INTERFACE statement.

» An interface over which the RIP protocol is communicated with other routers
must be configured with the RIP_INTERFACE statement.

« All other interfaces should be configured with the INTERFACE statement.

A VIPA interface is an exception to these guidelines and is discussed in more detail
in ['VIPA interfaces (Static VIPA and Dynamic VIPA)” on page 185

Communications Server enforces RFC rules against using either a subnetwork’s
broadcast or network address as a host address. (An address that has all ones in
the host portion is a subnet broadcast address. An address that has all zeros in the
host portion is the subnet’s network address.) Therefore, the subnet_mask on an
OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE statement should have
enough zero bits such that no home address in that subnet has all zeros or all ones
in the host portion of the address. For example if a subnet has two home addresses
10.1.1.1 and 10.1.1.2, then the subnet mask must have zeros in at least two bits;
for example, 255.255.255.252. However, if a subnet has four home addresses
10.1.1.1, 10.1.1.2, 10.1.1.3, and 10.1.1.4, then the subnet mask must have zeros in
at least three bits; for example, 255.255.255.248; in this case, there could be up to
six home addresses in that subnet (10.1.1.1 through 10.1.1.6). In general, if a
subnet mask has n zero bits, then there can be up to ((2**n)-2) home addresses in
that subnet. This limit applies even if the home addresses are configured on
different TCP/IP stacks.

Notes:

1. Itis important to define all interfaces to OMPROUTE, even ones not being used
for routing because OMPROUTE sets values that override
BSDROUTINGPARMS. When an interface that is not defined to OMPROUTE
comes up, OMPROUTE will assign it default values, and update the TCP/IP
stack’s control blocks with these default values, which could result in
undesirable effects. These default values include:

¢ MTU size set to 576

* Interface mask set to the class mask. OMPROUTE will generate message
EZZ7871 when it does this.

2. OMPROUTE supports up to 254 interfaces (physical and VIPA).

Configuring multi-access parallel interfaces: Whenever configuring
multi-access parallel interfaces (primary and secondary redundant interfaces having
IP addresses in the same network) for OMPROUTE (OSPF), the order of the
parallel interfaces in the HOME list of TCPIP profile must match the order of the
corresponding OSPF_INTERFACE statements in the OMPROUTE configuration file.
By doing so, OMPROUTE will treat the first interface in the list as primary and the
remaining ones as secondaries. The order of the interfaces is critical for
OMPROUTE (OSPF) to be able to send the link state updates (LSAs) correctly to

z/OS V1R4.0 CS: IP Configuration Guide

the neighboring routers so that the primary interface can be recognized. Otherwise,
a secondary interface configured in OMPROUTE or HOME list may be inadvertently
treated as a primary interface and this can cause routing problems between
OMPROUTE and its neighbors. In case of failure of a primary interface,
OMPROUTE will use the first available secondary interface and mark it as primary.

Note: This procedure is consistent with the method (Method 2) as described in
RFC 2178 for OSPF for multi-access parallel interfaces.

Point-to-point (For example CTC and CLAW): For point-to-point interfaces, the
destination IP address must be known to OMPROUTE. Specify the
DESTINATION_ADDR parameter to allow for the creation of a host route to the
address at the remote end of the interface.

Sample OSPF_INTERFACE

OSPF_INTERFACE
IP_Address=9.67.106.7
Name=CTC7T04
Subnet_mask=255.255.255.0
Attaches_to Area=1.1.1.1
Destination_Addr=9.67.106.4;

Sample RIP_INTERFACE

RIP_INTERFACE
IP_Address=9.67.103.7

Name= CTC7T06
Subnet_mask=255.255.255.0
Destination_Addr=9.67.103.6
RIPV2=Yes;

Sample INTERFACE

INTERFACE
IP_Address=9.67.111.1
Name=CTCX
Subnet_mask=255.255.255.0
Destination_addr=9.67.111.2;

Note: If another router is directly attached via a CLAW device, and the OSPF
protocol is being communicated with that router, the other router must also
be configured to view the CLAW device as a point-to-point interface. Failure
to do this results in a failure to add any routes via that router.

Point-to-Multipoint: For Point-to-Multipoint capable interfaces (for example
MPCPTP interfaces including XCF and IUTSAMEH connections), OMPROUTE
must know the IP addresses of the other routers (neighbors) with which it needs to
communicate the OSPF or RIP packets. However, due to underlying signaling that
takes place when a host connects to these network types, the stack is able to learn
the required addresses. In turn, OMPROUTE learns those IP address from the
stack. As a result, it is not necessary to configure the IP addresses of the other
routers on the interface statements.

Sample OSPF_INTERFACE

OSPF_INTERFACE

IP_Address=9.27.13.81

Name=XCFDOO
Attaches_to_Area=1.1.

1.1
Subnet_mask=255.255.255.0;

Sample RIP_INTERFACE

Chapter 4. Routing 183

184

RIP_INTERFACE
IP_Address=9.27.23.81
Name=MPCAO1
Subnet_mask=255.255.255.0
RIPV2=Yes;

Sample INTERFACE

INTERFACE
IP_Address=9.27.33.81
Name=XCFBOO
Subnet_mask=255.255.255.0;

Non-broadcast network interfaces (For example, Hyperchannel and ATM): If
the OSPF or RIP protocol communicates with one or more routers over a
non-broadcast network interface, OMPROUTE must know the IP addresses of the
other routers (neighbors) with which it needs to communicate. For non-broadcast
network interfaces, there is no underlying signaling that allows the stack to learn the
required IP addresses. As a result, the neighbor addresses must be configured to
OMPROUTE with the parameters configured as follows:

 DR_NEIGHBOR and/or the NO_DR_NEIGHBOR parameters on the
OSPF_INTERFACE statement

* NEIGHBOR parameter on the RIP_INTERFACE statement

* NON_BROADCAST=YES and ROUTER_PRIORITY parameters on the
OSPF_INTERFACE statement

In the OSPF case, DR_NEIGHBOR defines which routers within the non-broadcast
network can become the designated router. NO_DR_NEIGHBOR defines which
routers cannot become the designated router. ROUTER_PRIORITY defines the
priority of this router on the non-broadcast network so that the designated router
can be elected for the network. Note that multiple DR_NEIGHBOR and
NO_DR_NEIGHBOR parameters can be coded on one statement.

Sample OSPF_INTERFACE

OSPF_INTERFACE
IP_Address=9.37.84.49
Name=HCHEOQO
Subnet_mask=255.255.255.0
Attaches_to Area=1.1.1.1
Non_Broadcast=Yes
DR_Neighbor=9.37.84.53
No_DR_Neighbor=9.37.84.63
Cost0=3
Router_Priority=2;

Sample RIP_INTERFACE

RIP_INTERFACE
IP_Address=9.37.104.79
Name=ATMEOO
Subnet_mask=255.255.255.0
RIPV2=Yes
Neighbor=9.37.104.85
Neighbor=9.37.104.53;

Sample INTERFACE

INTERFACE
IP_Address=9.77.13.49
Name=ATMBOO
Subnet_mask=255.255.255.0;

z/OS V1R4.0 CS: IP Configuration Guide

Broadcast network interfaces (For example, Token Ring, Ethernet, and FDDI):
When the OSPF or RIP protocol is communicated over a broadcast medium such
as Token Ring, Ethernet, or FDDI, these networks allow for broadcasting and
multicasting. Therefore, it is not necessary for OMPROUTE to know the IP
addresses of the other routers on the network for OSPF or RIP packets to be
communicated with those routers. OMPROUTE sends packets to the other routers
on the network by using appropriate broadcast or multicast addresses. The IP
addresses of the other routers are learned as OSPF/RIP packets are received from
them. The OSPF_INTERFACE must include the ROUTER_PRIORITY parameter to
assist in electing a Designated Router for the network.

Sample OSPF_INTERFACE

OSPF_INTERFACE

IP_Address=9.59.101.5

Name=TR1
Subnet_mask=255.255.255.0

Attaches_to_Area=1.1.1.1

Cost0=2

Router_Priority=1;

Sample RIP_INTERFACE

RIP_INTERFACE
IP_Address=9.29.107.3
Name=TR2
Subnet_mask=255.255.255.0
RIPV2=Yes;

Sample INTERFACE

INTERFACE
IP_Address=9.77.14.49
Name=ETHBOO
Subnet_mask=255.255.255.0;

If OMPROUTE will be communicating with the OSPF or RIP Version 2 protocol over
a token ring media where an attached router does not listen for multicast MAC
address 0xC000.0004.0000, see [‘Token-ring multicast” on page 170}

For interfaces into broadcast media which contain routers that do not support
multicast, it is possible to configure the interfaces as Non-Broadcast Network
Interfaces. This would cause OMPROUTE to unicast to the neighbor addresses
rather than using a multicast address. However, it would also be necessary to
configure all the routers on the network to unicast. Otherwise, their multicast
packets would never be received.

Note that it is possible to define neighbors using DR_NEIGHBOR and/or
NO_DR_NEIGHBOR parameters for OSPF_INTERFACEs and using NEIGHBOR
parameters for RIP_INTERFACEs that are broadcast capable, but it is not required
or recommended. If you define neighbors on these interfaces, you must define all of
them, as OMPROUTE will not communicate RIP or OSPF to undefined neighbors if
any are defined on an interface.

VIPA interfaces (Static VIPA and Dynamic VIPA): If only the RIP protocol is
used by OMPROUTE, VIPA interfaces should be defined with the INTERFACE
statement. If only OSPF or if both OSPF and RIP are used by OMPROUTE, VIPA
interfaces should be defined with the OSPF_INTERFACE statement.

Sample OSPF_INTERFACE

Chapter 4. Routing 185

186

OSPF example:

OSPF_INTERFACE

IP_Address=4.4.4.4

Name=VIPAl
Subnet_mask=255.255.255.252;

Sample INTERFACE

non-0SPF example:

INTERFACE

IP_Address=6.6.6.6
Name=VIPAl
Subnet_mask=255.255.255.252;

Note: The most specific subnet mask you can specify is 255.255.255.252.

If the name in an OSPF_INTERFACE or INTERFACE statement refers to a link of
type VIRTUAL, then OMPROUTE generates and advertises the following routes
whenever applicable:

1. A network route to the network specified in that statement

2. A subnet route to the subnet specified in that statement

3. A host route to the IP_address specified in that statement

Following are the conditions for advertising these routes on a physical network
interface to a network:

1. Network route - If VIPA is not in the same network as the physical network
interface and is allowed by filters or RANGE.

2. Subnet route - VIPA subnet routes are advertised in OMPROUTE in all
conditions, except for RIP when filters prevent it.

3. Host route - as allowed by filters or RANGE. Advertisement of the host route for
a VIPA defined on an OSPF_INTERFACE statement can be controlled by the
SUBNET parameter on the OSPF_INTERFACE statement that defines that
VIPA. If SUBNET=YES, then the host route is not advertised. If SUBNET=NO
(the default), the host route is advertised. Care should be taken in using this
parameter. VIPA host routes should not be suppressed for dynamic VIPAs or for
VIPAs whose subnet might exist on multiple hosts. It is up to the user to ensure
these restrictions are enforced, as they are not and cannot be enforced by
OMPROUTE.

On the RIP_INTERFACE statement for a physical network interface, the VIPA
routes are allowed to be advertised by the following filter parameters:

1. Send_Net_Routes

2. Send_Subnet_Routes

3. Send_Host_Routes, and Send_Only

In addition, the global FILTER and Send_Only statements for RIP can be used to
specify which routes are advertised or not.

For OSPF, the RANGE statement can be used to advertise or not to advertise the
VIPA routes external to an area in terms of address range based on a subnet mask.

Note: For RIP, the Send_Only = (VIRTUAL) filter in conjunction with the
Send_Net_Routes, Send_Subnet_Routes, and Send_Host_Routes filters, or
the FILTER statement with VIPA routes, indicates whether or not VIPA routes
can be advertised over a RIP interface. Unlike RIP, there are no routing
filters for OSPF. For OSPF, the RANGE statement can be used to control
which address range of routes can be advertised or not external to an area;

z/OS V1R4.0 CS: IP Configuration Guide

however, it is not granular enough for use as a routing filter. In area-border
router configurations, if there are multiple VIPA addresses that are uniquely
subnetted, the RANGE statement can be used to specify which VIPA subnet
address range of routes can be advertised or not external to an area.

For Dynamic VIPA (DVIPA), link names are assigned programmatically by the stack
when the DVIPA is created. Therefore, the name field set on the INTERFACE or
OSPF_INTERFACE statement is ignored by OMPROUTE for DVIPAs.

Because a stack could have a large number of DVIPAs defined, as well as DVIPA
ranges, additional wildcard capabilities exist on the OSPF_INTERFACE and
INTERFACE statements for use only with DVIPAs.

Ranges of DVIPA interfaces can be defined using the Subnet_Mask parameter on
the OSPF_INTERFACE or INTERFACE statement. The range defined in this way
will be all the IP addresses that fall within the subnet defined by the mask and the
IP_address. For more information on the Subnet_Mask parameter, see
[Defining interfaces (OSPF and RIP)” on page 182|

In the example below, DVIPA interfaces in the range of 10.138.65.80 through
10.138.65.95 are defined:

Sample OSPF_INTERFACE

OSPF example:

OSPF_INTERFACE

IP_Address=10.138.65.80

Name=DVIPAs
Subnet_mask=255.255.255.240;

Sample INTERFACE

non-0SPF example:

INTERFACE
IP_Address=10.138.65.80
Name=DVIPAs
Subnet_mask=255.255.255.240;

You must consider an additional issue when VIPAs are being moved between
TCP/IP stacks and dynamic routing is provided for those stacks by OMPROUTE.
This movement of VIPAs can be done manually or automatically via the use of
Dynamic VIPAs. For the VIPAs to be correctly processed and advertised by the
routing protocols, they (like all other interfaces) must be configured to OMPROUTE
at the time that they become active on the TCP/IP stack. This configuration of
VIPAs to OMPROUTE can be accomplished by:

» Explicitly configuring each VIPA with its own OSPF_INTERFACE or INTERFACE
statement

» Configuring a range of DVIPAs with a single OSPF_INTERFACE or INTERFACE
statement, using the method described above

» Configuring a group of VIPAs with a single OSPF_INTERFACE or INTERFACE
statement, using the wildcarding feature available on the interface statements

The recommended approach for configuring OMPROUTE for VIPAs that might
move is to preconfigure the OMPROUTE on each TCP/IP stack with all VIPAs that
could potentially exist on that stack at some time. Preconfiguring in this way
prepares each OMPROUTE for the possible addition of the VIPAs to its stack.
During times when the VIPAs do not exist on a particular OMPROUTE’s stack, the
configuration information will not be used. However, during periods when the VIPAs

Chapter 4. Routing 187

188

do exist on that OMPROUTE'’s stack, the configuration information will be available
for use by OMPROUTE. This method is recommended because of its ability to
respond to movement of the VIPAs between TCP/IP stacks without modification of
the OMPROUTE configuration with each move.

If the pre-configuration of VIPAs described in this section has not been done, it is
still possible to define a VIPA to OMPROUTE such that it is properly processed and
advertised when it becomes active on the corresponding TCP/IP stack. To do this,
add the appropriate OSPF_INTERFACE or INTERFACE statement to the
OMPROUTE configuration file and then cause OMPROUTE to reread the
configuration file by issuing the MODIFY <procname>,RECONFIG command.

Note: You must modify the OMPROUTE configuration file and issue the
RECONFIG command prior to the movement of the VIPA to the
corresponding TCP/IP stack.

Step 5: Defining interface costs (OSPF and RIP)

Both the OSPF and RIP protocols have a cost value associated with interfaces.
With both protocols, the cost of a route to reach a destination is the sum of the
costs of each link that will be traversed on the way to the destination. In the sample
network shown in [Figure 33 on page 158} the cost of a route to get from TCPCS7 to
router 3.3.3.3 via TCPCS4 is the cost of the link from TCPCS7 to TCPCS4 plus the
cost of the link from TCPCS4 to router 3.3.3.3.

The method for configuring cost values differs between the OSPF and RIP
protocols. The cost values of OSPF links, set using the COSTO parameter of the
OSPF_INTERFACE statement, should be configured to ensure that preferred routes
to destinations will have a lower cost than less preferable routes. The less
preferable routes, with the higher cost, will not be used except upon failure of the
preferred routes.

For the purpose of the following example, the sample network

is used and the convention stack (interface) is used to refer to the cost

configured for a particular interface on a stack. For instance TCPCS7(9.67.106.7)
refers to the cost configured for interface 9.67.106.7 on TCPCS7.

There are three possible routes from TCPCS7 to router 3.3.3.3. They are:

* Direct (TCPCS7 —> 3.3.3.3),

* Via TCPCS4 (TCPCS7 —> TCPCS4 —> 3.3.3.3)

* Via router 8.8.8.8 and TCPCS4 (TCPCS7 —> 8.8.8.8 —> TCPCS4 —> TCPCS3)

If the preferred route from TCPCS7 to router 3.3.3.3 is via TCPCS4, then interface
costs must be configured such that the following are true:
TCPCS7(9.67.106.7) + TCPCS4(9.67.101.4) < TCPCS7(9.67.102.7)

TCPCS7(9.67.106.7) + TCPCS4(9.67.101.4) < TCPCS7(9.67.100.7) +
8.8.8.8(9.67.105.8) + TCPCS4(9.67.101.4)

The reasons for preferring one route over another are numerous. One approach for
assigning OSPF link costs would be to set the costs to values inversely proportional
to the bandwidth of the physical media. This would result in higher bandwidth routes
having lower costs, thus becoming the preferred routes.

The cost values of RIP links are generally set to a value of 1. This results in the
cost of a route to a destination being the number of hops to reach the destination.
In the sample network, this would result in the three possible RIP routes from
TCPCS?7 to router 3.3.3.3 having the following costs:

z/OS V1R4.0 CS: IP Configuration Guide

» Direct (TCPCS7 -> 3.3.3.3), cost = 1
* Via TCPCS4 (TCPCS7 -> TCPCS4 -> 3.3.3.3), cost = 2

* Via router 8.8.8.8 and TCPCS4 (TCPCS7 -> 8.8.8.8 -> TCPCS4 -> TCPCS3),
cost =3

If it were desired that the route via TCPCS4 be the preferred route, this could be
accomplished by increasing the cost of getting directly from TCPCS7 to router
3.3.3.3. This could be done by increasing either the OUT_METRIC configured on
the RIP_INTERFACE statement for 9.67.102.3 on router 3.3.3.3 or the IN_METRIC
configured on the RIP_INTERFACE statement for 9.67.102.7 on TCPCS7. Care
must be taken when increasing IN_METRIC and OUT_METRIC values to be sure
that the cost to reach any destination does not exceed the RIP maximum of 15.

Step 6: Configuring Virtual Links (If OSPF protocol is used)
The OSPF protocol is dependent upon complete connectivity of the backbone area.

To maintain backbone connectivity each backbone router must be interconnected. If
the configuration of an OSPF Autonomous System is such that the backbone area
will become separated into two or more disconnected sections, connectivity must be
restored for the protocol to work correctly. This can be done via a Virtual Link. An
OSPF Virtual Link should not be confused with a VIPA link. Virtual Links can be
configured between any two backbone routers that have an interface to a common
non-backbone area. The VIRTUAL_LINK statements specify the ROUTERID of the
link endpoint and must be configured at both endpoints. In the sample network
shown in [Figure 33 on page 158] a Virtual Link is configured between TCPCS4 and
TCPCS?7 to restore backbone connectivity through Area 1.1.1.1.

Sample TCPCS4

TCPCS4:

VIRTUAL_LINK
Virtual_Endpoint_RouterID=7.7.7.7

Links_Transit_Area=1.1.1.1;

Sample TCPCS7

TCPCS7:

VIRTUAL_LINK
Virtual_Endpoint_RouterID=4.4.4.4
Links Transit Area=1.1.1.1;

Step 7: Managing high-cost links (If OSPF protocol is used)
The periodic nature of OSPF routing traffic requires a link’s underlying data-link
connection to be constantly open. This can result in unwanted usage charges on
network segments whose costs are very high. There are two configuration steps
that can be taken to inhibit the periodic nature of the protocol.

The first step that can be taken is to define the link as a Demand Circuit. The global
Demand_Circuit=YES configuration statement must be specified before any links
can be defined as demand circuits. If you configure an OSPF_INTERFACE with the
Demand_Circuit=YES parameter, Link State Advertisements (LSAs) sent over the
interface will not be periodically refreshed. Only LSAs with real changes will be
readvertised. In addition, aging of these LSAs will be disabled such that they will
not age out of the link state database.

Another step that can be taken is to define Hello Suppression for the link (using the

Hello_Suppression parameter of the OSPF_INTERFACE statement). Hello
Suppression is only meaningful if Demand_Circuit=YES and the device is

Chapter 4. Routing 189

190

point-to-point or point-to-multipoint. Refer to|zZ0S Communications Server: IH
[Configuration Referencd for more information on configuring the Hello_Suppression
parameter.

If Demand_Circuit=YES and Hello Suppression is implemented, the
PP_Poll_Interval parameter of the OSPF_INTERFACE statement can be used to
specify the interval at which OMPROUTE should attempt to contact a neighbor to
reestablish a neighbor relationship when the relationship has failed, but the
interface is still available.

Step 8: Defining filters (If RIP protocol is used)

RIP Filters can be configured to OMPROUTE such that certain RIP routing
information will not be broadcast out to other routers and/or accepted from other
routers. The filters can be applied to individual RIP_INTERFACEs, via the FILTER
parameter, or to all RIP interfaces via by the global FILTER statement. When
defining a filter, a filter type (sending or receiving) is specified along with a
destination/mask address pair. By using filters, an installation can limit the amount
of RIP routing information broadcast into the network and/or the amount of RIP
routing information maintained by OMPROUTE. In addition, filters can be used to
hide destination addresses from portions of the network.

In the sample network shown in[Figure 33 on page 158, if you wanted to hide the
10.1.1.0 subnet from TCPCS6 (as well as all routers and hosts on the remote side
of TCPCS®6), you could define the following filter on TCPCS7:

Filter=(nosend,10.1.1.0,255.255.255.0);

Step 9: Defining route precedence in a MultiProtocol
environment (If OSPF protocol is used)

Note that this discussion of route precedence is quite complicated. If OSPF is the
only routing protocol used in your network, route precedence is less of a concern.
If, in addition, none of your OSPF routers are configured as AS Boundary Routers,
the route precedence concern is entirely eliminated. For environments with multiple
protocols or AS Boundary Routers, the following information is provided.

OMPROUTE applies an order of precedence in choosing between two routes to the
same destination that were learned via different routing protocols or using
information provided by an OSPF AS Boundary Router. To describe this order of
precedence applied by OMPROUTE, a few terms must first be defined.

RIP route
A route learned via the RIP protocol. A RIP route is generated using
information provided in a RIP packet from a neighboring router. For
example, in the sample network shown in [Figure 33 on page 158, the route
from TCPCS7 to destination subnet 30.1.1.0 is a RIP route.

OSPF internal route
A route learned via the OSPF protocol where the entire path traversed to
reach the destination lies within the OSPF autonomous system. For
example, in the sample network shown in |Figure 33 on page 158|, the route
from TCPCS7 to destination 9.67.108.2 on Router 2.2.2.2 is an OSPF
internal route.

OSPF external route
A route learned via the OSPF protocol where part of the path traversed to
reach the destination does not lie within the OSPF autonomous system.
The path will leave the autonomous system if it uses information brought
into the OSPF autonomous system by an AS Boundary Router. This
information brought into the OSPF AS may be information imported from a

z/OS V1R4.0 CS: IP Configuration Guide

different autonomous system (for example, RIP) or information about
destinations statically configured on or directly connected to the AS
Boundary Router. For example, in the sample network, shown in[Figure 33
[on page 158 the route from TCPCS4 to destination 9.67.103.6 on TCPCS6
is an OSPF external route. TCPCS7, configured as an AS Boundary Router,
has imported information about that destination into the OSPF AS from the
RIP AS.

OSPF external routes fall into two categories based upon the setting of the
multiprotocol comparison value, which is defined in
. If the comparison value is set to Type1 on the AS Boundary
Router that imports the external information into the OSPF AS, then OSPF
external routes generated using this information will be OSPF Type 1
External Routes. If the comparison value is set to Type2 on the AS
Boundary Router, then the generated routes will be OSPF Type 2 External
Routes. For example, in the sample network, shown in

if the comparison value on TCPCS7 (an AS Boundary Router) is
set to Type 1, the route from TCPCS4 to destination 9.67.103.6 on TCPCS6
is an OSPF Type 1 external route. If the comparison value on TCPCS7 is
set to Type 2, the route is an OSPF Type 2 external route.

MultiProtocol comparison: You can configure this comparison value to allow for
the specification of how route costs from different autonomous systems should be
treated when they coexist. In OMPROUTE, you can configure this value via the
COMPARISON configuration statement. When COMPARISON=Type1 is configured,
the route cost values used within different autonomous systems (for example, the
OSPF AS and the RIP AS) are considered comparable. With COMPARISON=Type2
configured, the route cost values used with the different autonomous systems are
considered non-comparable.

The comparison value can be used in several different ways, depending on the
function being performed by a router:

* As an AS Boundary Router, OMPROUTE uses the comparison value to
determine the type of external routes (Type 1 or Type 2) that is generated by
routers in the OSPF AS using routing information that the AS Boundary Router
imports into the OSPF AS. See[“Step 9: Defining route precedence in a

[MultiProtocol environment (If OSPF protocol is used)” on page 190 for additional

OSPF external route definition information.

* As an AS Boundary Router, OMPROUTE also uses the comparison value in
determining how route cost values will be assigned when importing routes from
the OSPF AS into the RIP AS.

— When COMPARISON=Type1 is configured (indicating that cost values are
comparable), an OSPF route imported into the RIP AS will be advertised with
the actual cost of the OSPF route. For example, in the sample network, if
TCPCS7 is configured with COMPARISON=Type1 and the OSPF route from
TCPCS?7 to destination 9.67.108.2 on TCPCS2 has a cost of 7, then TCPCS7
will advertise into the RIP AS a RIP route to that destination with a cost of 7.

Notes:

1.

An exception to this rule (defining how OSPF routes are advertised into
the RIP AS when COMPARISON=Type1) occurs when the OSPF route to
be imported is an OSPF Type 2 External Route. When this is the case,
the route is not advertised into the RIP AS at all.

It is important to remember the requirement that all destinations in the RIP
AS must be reachable with a cost no greater than 15. Using
COMPARISON=Type1 requires that the cost values of OSPF routes be

Chapter 4. Routing 191

192

low. Any destinations in the OSPF AS that can only be reached from the
RIP AS with a cost greater than 15 will become unreachable.

— When COMPARISON=Type2 is configured (indicating that cost values are
non-comparable), an OSPF route imported into the RIP AS is advertised with
a cost of 1. If a router in the RIP AS has two possible routes to a destination,
one internal to the RIP AS and another that was imported from OSPF, this
approach results in the route imported from OSPF being favored. For
example, in the sample network, [Figure 33 on page 158} if TCPCS7 is
configured with COMPARISON=Type2 and TCPCS7 can somehow reach a
destination in the 30.1.1.0 subnet without passing through TCPCS6 (using
links not shown in the sample), then TCPCS7 advertises into the RIP AS a
RIP route to the destination with a cost of 1. As a result, TCPCS6 determines
that the destination can be reached via TCPCS7 with a cost of 2. If the cost of
the route for TCPCS6 to reach the destination internal to the RIP AS is
greater than 2, then the route via TCPCS?7 is chosen.

Note: An exception to this rule (defining how OSPF routes are advertised into
the RIP AS when COMPARISON=Type2) occurs when the OSPF route
to be imported is an OSPF Type 2 External Route. When this is the
case, the route is advertised into the RIP AS with the actual cost of the
OSPF Type 2 External Route.

* As any router that has routing information from different autonomous systems,
OMPROUTE uses the comparison value while choosing between the routes
generated using the information from the different autonomous systems. How the
comparison value is used in this case is shown in

Given these definitions, the order of precedence used in choosing between multiple
routes to the same destination, which were learned via the different protocols or by
using information provided by an OSPF AS Boundary Router, can be shown in
[Table 11| In(Table 11, Source Comparison refers to the setting of the comparison
value (using the COMPARISON configuration statement) on the router that is using
the order of precedence to choose between the multiple routes, while Route 1 and
Route 2 are the two possible routes being chosen between.

Table 11. Route precedence

Source comparison |Route 1 Type Route 2 Type Route chosen

Type 1 OSPF Internal RIP OSPF Internal

Type 1 OSPF Internal OSPF Type 1 OSPF Internal
External

Type 1 OSPF Internal OSPF Type 2 OSPF Internal
External

Type 1 RIP OSPF Type 1 Lowest Cost Route
External

Type 1 RIP OSPF Type 2 RIP Route
External

Type 1 OSPF Type 1 OSPF Type 2 OSPF Type 1

External External External

Type 2 OSPF Internal RIP OSPF Internal

Type 2 OSPF Internal OSPF Type 1 OSPF Internal
External

Type 2 OSPF Internal OSPF Type 2 OSPF Internal
External

z/OS V1R4.0 CS: IP Configuration Guide

Table 11. Route precedence (continued)

Source comparison |Route 1 Type Route 2 Type Route chosen
Type 2 RIP OSPF Type 1 OSPF Type 1
External External
Type 2 RIP OSPF Type 2 Lowest Cost Route
External
Type 2 OSPF Type 1 OSPF Type 2 OSPF Type 1
External External External

Network design considerations with z/OS CS
OMPROUTE may be run on z/OS CS for a variety of reasons. If the z/OS CS host

is being used as an application or server host and the routing daemon is being run
primarily to provide access to network resources, or to provide network resources
access to the z/OS CS host, then care must be taken to ensure that the z/OS CS
host is not overly burdened with routing work. Unlike routers or other network boxes
whose sole purpose is routing, an application host zZOS CS will be doing many
things other than routing, and it is not desirable for a large percentage of machine
resources (memory and CPU) to be used for routing tasks, as can happen in very
complex or unstable networks. In this case the z/OS CS should not be configured
as a backbone router, either intentionally or inadvertently. Careful network design
can minimize the routing burdens on the z/OS CS application host without
compromising the accessibility of z/OS CS resources to the network and vice versa.
If care is not taken to minimize the routing work required by the z/OS CS host,
OMPROUTE may consume excessive cycles or memory processing huge numbers
of routing updates from the network. Or the burden of routing updates may become
so large that the z/OS CS cannot keep up because of other workloads on the
machine. Since OSPF is heavily timer-driven, this could cause loss of adjacencies
and routing problems.

The primary way to reduce the routing burdens on the z/OS CS host is by use of
OSPF areas. Refer to|“Step 2: Defining OSPF areas (If OSPF protocol is used)” on|
for more information. A z/OS CS application host or sysplex can be
placed into a non-backbone area with dedicated routers acting as area-border
routers. The area-border routers would advertise the z/OS CS’s resources to other
attached areas (for example the backbone) and would summarize the network
outside the local area to the z/OS CS hosts. If possible, this can be further refined
to reduce routing protocol traffic by use of interarea route summarization
(accomplished in OMPROUTE area-border routers by the RANGE statement, see
[z/0S Communications Server: IP Configuration Referencd, and in Cisco routers with
the area range command). Refer to[“Step 3: Limiting information exchange between|
[OSPF areas (If OSPF protocol is used)” on page 181|for more information.

An even further, and ideal, optimization would be to make the area containing the
z/OS CS application host or sysplex a stub area. In a stub area, only routes within
the area are shared among the hosts, and no summaries of other areas are flooded
into the area by the area-border routers. Instead, default routes are used to
represent all destinations outside the stub area. The stub area’s resources are still
advertised to the network at large by the area-border routers. You can only use this
optimization if the following two statements apply to your network:

» It is acceptable to use default routes to reach destinations outside the stub area.
This means that either there is only one area-border router connecting the stub
area to the rest of the network, or if there are multiple such connections they are
redundant, so that it does not matter which one is used to get outside the stub
area.

Chapter 4. Routing 193

* You have no non-OSPF destinations to advertise to the network at large. Stub
areas do not permit importation of OSPF external routes. This means for
example that you do not have a RIP network attached to the stub area, or if you
do, you do not want its destinations reachable from the stub area. Other types of
routes that cannot be imported into stub areas include direct routes (for example,
for networks attached to interfaces that are not running the OSPF protocol) and
static routes. If you define your VIPAs as OSPF_INTERFACE statements in your
OMPROUTE configuration file, routes to their addresses will be considered
OSPF routes and therefore importable into the stub area and can be advertised
by the area-border routers to the network at large.

It is highly recommended to put z/OS CS application hosts or sysplexes into stub
areas if at all possible.

A further optimization is to prevent z/OS CS from becoming the designated router
on multiaccess media, when pure routers that can perform this function are present.
On a multiaccess medium, the designated router and the backup designated router
will carry the majority of the routing protocol load for all hosts on the medium. While
z/OS CS is capable of performing this role, it does impose additional routing
overhead on the system. It would be preferable to allow pure routers to perform this
role, if they are available. This is accomplished by ensuring that the pure routers’
interfaces onto the medium have higher ROUTER_PRIORITY values than the z/OS
CS interfaces on the same medium. However, if the only hosts on a medium are
z/OS CS, then one or two of them will have to be designated router or backup
designated router.

Verification of OMPROUTE configuration and state

The following sections show sample output from each of the commands that can be
used to display OMPROUTE information. The syntax of these DISPLAY commands,
as well as detailed information about the data displayed, can be found in
[Communications Server: IP Configuration Reference]

Note: All commands that include the LIST subparameter indicate that the
information being displayed is configured information only and does not
necessarily mean that the information is currently being used by
OMPROUTE. To display information in current use, use related commands to
display current, run-time statistics, and parameters. There are cases when
the configured information will not match the in-use information due to some
undefined or unresolved information in the OMPROUTE configuration. For
example, undefined interfaces or parameters in the OMPROUTE
configuration or an incorrect sequence of dynamic reconfiguration with the
MODIFY OMPROUTE,RECONFIG command can result in no update of the
in-use information at all. Information defined on wildcard interfaces is not
displayed in the LIST commands; it is only displayed in the corresponding
non-LIST commands when wildcard information is resolved to actual physical
interfaces.

Displaying all OSPF configuration information: To display all of the OSPF
configuration information, enter the following command:
D TCPIP,TCPCS7,0MP,0SPF,LIST,ALL

EZ778311 GLOBAL CONFIGURATION 735
TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0

STACK AFFINITY: TCPCS7
OSPF PROTOCOL: ENABLED
EXTERNAL COMPARISON: TYPE 2

AS BOUNDARY CAPABILITY: ENABLED
IMPORT EXTERNAL ROUTES: RIP SUB
ORIG. DEFAULT ROUTE: NO

z/OS V1R4.0 CS: IP Configuration Guide

DEFAULT ROUTE COST: (1, TYPE 2)
DEFAULT FORWARD. ADDR.: 0.0.0.0

DEMAND CIRCUITS: ENABLED
EZ778321 AREA CONFIGURATION
AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A
1.1.1.1 0=NONE NO N/A N/A
--AREA RANGES--
AREA ID ADDRESS MASK ADVERTISE?
1.1.1.1 9.67.101.0 255.255.255.0 NO
EZ778331 INTERFACE CONFIGURATION
IP ADDRESS AREA COST RTRNS TRNSDLY PRI HELLO DEAD DB_EX
7.7.7.7 1.1.1.1 1 5 1 1 10 40 40
9.67.104.7 1.1.1.1 1 5 1 1 10 40 40
9.67.100.7 1.1.1.1 1 5 1 1 10 40 40
9.67.102.7 1.1.1.1 1 5 1 1 10 40 40
9.67.106.7 1.1.1.1 1 5 1 1 10 40 40
9.67.107.7 0.0.0.0 1 5 1 1 10 40 40
EZ778361 VIRTUAL LINK CONFIGURATION
VIRTUAL ENDPOINT TRANSIT AREA RTRNS TRNSDLY HELLO DEAD DB_EX
4.4.4.4 1.1.1.1 10 5 30 180 180
EZ778351 NBMA CONFIGURATION
INTERFACE ADDR POLL INTERVAL
9.67.104.7 180

EZZ78341 NEIGHBOR CONFIGURATION
NEIGHBOR ADDR INTERFACE ADDRESS DR ELIGIBLE?

9.67.104.15 9.67.104.7 YES
9.67.104.25 9.67.104.7 NO
9.67.104.16 9.67.104.7

Displaying information about configured OSPF areas: To display information
about configured OSPF Areas, enter the following command:

D TCPIP,TCPCS7,0MP,0SPF,LIST,AREAS
EZ778321 AREA CONFIGURATION 737

AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A
1.1.1.1 0=NONE NO N/A N/A
--AREA RANGES--

AREA ID ADDRESS MASK ADVERTISE?

1.1.1.1 9.67.101.0 255.255.255.0 NO

Displaying configuration information about configured OSPF interfaces: To
display configuration information about configured OSPF interfaces, enter the
following command:

D TCPIP,TCPCS7,0MP,0SPF,LIST,IFS
EZ778331 INTERFACE CONFIGURATION 739

IP ADDRESS AREA COST RTRNS TRNSDLY PRI HELLO DEAD DB_EX
7.7.7.7 1.1.1.1 1 5 1 1 10 40 40
9.67.104.7 1.1.1.1 1 5 1 1 10 40 40
9.67.100.7 1.1.1.1 1 5 1 1 10 40 40
9.67.102.7 1.1.1.1 1 5 1 1 10 40 40
9.67.106.7 1.1.1.1 1 5 1 1 10 40 40
9.67.107.7 0.0.0.0 1 5 1 1 10 40 40

Note: Wildcard interface definitions are not displayed. However, when an actual
interface is resolved to a wildcard definition, its information is displayed.

Chapter 4. Routing 195

196

Displaying information about configured Non-broadcast Multiple Access OSPF
interfaces: To display information about configured Non-broadcast Multiple Access
OSPF interfaces, enter the following command:

D TCPIP,TCPCS7,0MP,0SPF,LIST,NBMA

EZ778351 NBMA CONFIGURATION 745

INTERFACE ADDR POLL INTERVAL
9.67.104.7 180

Displaying information about configured OSPF Virtual Links: To display
information about configured OSPF virtual links, enter the following command:
D TCPIP,TCPCS7,0MP,0SPF,LIST,VLINKS

EZ778361 VIRTUAL LINK CONFIGURATION 747

VIRTUAL ENDPOINT TRANSIT AREA RTRNS TRNSDLY HELLO DEAD DB_EX
4.4.4.4 1.1.1.1 10 5 30 180 180

Displaying information about configured OSPF neighbors: To display
information about configured OSPF neighbors enter the following command:
D TCPIP,TCPCS7,0MP,0SPF,LIST,NBRS

EZ778341 NEIGHBOR CONFIGURATION 749
NEIGHBOR ADDR INTERFACE ADDRESS DR ELIGIBLE?

9.67.104.15 9.67.104.7 YES
9.67.104.25 9.67.104.7 NO
9.67.104.16 9.67.104.7 NO

Displaying the contents of a single OSPF link state advertisement: To display
the contents of a single OSPF link state advertisement, enter the following
command:

D TCPIP,TCPCS7,0MP,0SPF,LSA,LSTYPE=1,LSID=7.7.7.7,0RIG=7.7.7.7 ,AREAID=1.1.1.1
EZ778801 LSA DETAILS 751

LS AGE: 521
LS OPTIONS: E,DC
LS TYPE: 1

LS DESTINATION (ID): 7.7.7.7
LS ORIGINATOR: 7.7.7.7
LS SEQUENCE NO: 0X80000013
LS CHECKSUM: OXA9A
LS LENGTH: 120
ROUTER TYPE: ABR,ASBR,V
ROUTER IFCS: 8
LINK ID: 7.7.7.4
LINK DATA: 255.255.255.252
INTERFACE TYPE: 3
NO. OF METRICS: 0O
TOS 0 METRIC: 1
LINK ID: 8.8.8.8
LINK DATA: 9.67.100.7
INTERFACE TYPE: 1
NO. OF METRICS: 0
TOS O METRIC: 1 (1)
LINK ID: 3.3.3.3
LINK DATA: 9.67.102.7
INTERFACE TYPE: 1
NO. OF METRICS: 0
TOS O METRIC: 1 (1)
LINK ID: 4.4.4.4
LINK DATA: 9.67.106.7
INTERFACE TYPE: 1
NO. OF METRICS: 0
TOS O METRIC: 1 (1)
LINK ID: 7.7.7.7
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3
NO. OF METRICS: 0

z/OS V1R4.0 CS: IP Configuration Guide

TOS 0 ME

LINK ID:

LINK DATA:

INTERFACE TYPE:
NO. OF M
TOS 0 ME

LINK ID:

LINK DATA:

INTERFACE TYPE:
NO. OF M
TOS 0 ME

LINK ID:

LINK DATA:

INTERFACE TYPE:
NO. OF M
TOS 0 ME

TRIC: 1
9.67.100.8
255.255.255.255
3

ETRICS: 0

TRIC: 1
9.67.102.3
255.255.255.255
3

ETRICS: 0

TRIC: 1
9.67.106.4
255.255.255.255
3

ETRICS: 0

TRIC: 1

Displaying statistics and parameters for OSPF areas: To display statistics and
parameters for all OSPF areas attached to the router, enter the following command:

D TCPIP,TCPCS7,0MP,0SPF,AREASUM
EZZ78481 AREA SUMMARY 757

AREA ID AUTHENTICATION
0.0.0.0 NONE
1.1.1.1 NONE

#IFCS #NETS #RTRS #BRDRS DEMAND

2 0 4
5 0 4

2 ON
2 ON

Displaying the list of AS external advertisements: To display a list of AS
external advertisements that are in the OSPF link state database, enter the

following command:

D TCPIP,TCPCS7,0MP,0SPF,EXTERNAL
EZ778531 AREA LINK STATE DATABAS
TYPE LS DESTINATION LS ORIGI
506.6.6.6
@9.67.103.6
@10.
e10.
@20.
@20.
@30.
@30.
@30.
@30.1.1.
@130.200.
@130.200.
©130.200.
@130.200.
©@130.201.
@130.201.
@130.202.
@130.202.

1
1
1
1
1.
0
1
1

= O
[e- - NoNoN ol =l

oo
O WO WOOWOOWNNNNOoToTNDND NN

CrOoT o1 o1 OO OO OO OO o1 OO o1 Ol

O WO WO WO WNNNNOTOTNN NN
COWO WO WOWNNNNOTOITNN NN
O WO WO WO WNNNNOITOTNN NN

[cNoNoRoN o Nol
[cNoNoNoN N NoNo]

ADVERTISEMENTS
CHECKSUM TOTAL:

E 759

NATOR SEQNO AGE
0X80000007 825
0X80000007 831
0X80000003 1690
0X80000003 1690
0X80000003 1616
0X80000003 1616
0X80000006 831
0X80000006 831
0X80000001 825
0X80000001 825
0X80000003 1695
0X80000003 1630
0X80000003 1695
0X80000003 1630
0X80000003 1695
0X80000003 1630
0X80000003 1694
0X80000003 1629

: 18
0X83472

XSUM
0X1B5C
OXEI1F3
0X2775
OX1D7E
0X4A3C
0X4045
0XBOCO
0X99D5
0X7BF4
0X5319
0X98C0
0X243
0X83D3
OX42EF
0X8CCB
OXF54E
0X80D6
OXE959

Displaying a list of non-AS external advertisements: To display a list of non-AS

external advertisements that are in the OSPF link state database for a particular

OSPF area, enter the following command:

D TCPIP,TCPCS7,0MP,0SPF,DATABASE
EZZ78531 AREA LINK STATE DATABAS

TYPE LS DESTINATION LS ORIGI
1@3.3.3.3 3.3.3.3
1 e4.4.4.4 4.4.4.4
107.7.7.7 7.7.7.7
1 @8.8.8.8 8.8.8.8
362.2.2.2 4.4.4.4

,AREAID=1.1.1.1

E 761

NATOR SEQNO AGE
0X8000000F 879
0X8000001A 713
0X80000013 711
0X8000000D 861
0X80000003 1676

XSUM
0X8B11
0XA020
OXA9A
0XBD81
0XC45C

Chapter 4. Routing

197

3 65.5.5.4 7.7.7.7 0X80000003 880 OXE327
3 @5.5.5.5 7.7.7.7 0X80000003 880 OXDF29
367.7.7.4 7.7.7.7 0X80000001 710 0X956E
3 09.67.107.5 7.7.7.7 0X80000006 881 0X4Al4
3 09.67.107.7 7.7.7.7 0X80000003 880 0X4618
3 09.67.108.2 4.4.4.4 0X80000003 1667 OXBDB1
3 09.67.108.4 4.4.4.4 0X80000003 1658 0XB3B8
4 02.2.2.2 4.4.4.4 0X80000003 1658 OXAC74
4 @5.5.5.5 7.7.7.7 0X80000003 880 0XC741

ADVERTISEMENTS: 14

CHECKSUM TOTAL: 0X884B0

Displaying current, run-time statistics and parameters for OSPF interfaces:
To display current, run-time statistics and parameters for OSPF interfaces, enter the
following command:

D TCPIP,TCPCS7,0MP,0SPF, INTERFACE
EZ778491 INTERFACES 763

IFC ADDRESS PHYS ASSOC. AREA TYPE STATE #NBRS #ADJS
7.7.7.7 VIPAIA 1.1.1.1 VIPA N/A N/A N/A
9.67.104.7 NBMA7 1.1.1.1 MULTI 1 3 0
9.67.100.7 CTC7T08 1.1.1.1 P-pP 16 1 1
9.67.102.7 CTC7T703 1.1.1.1 P-p 16 1 1
9.67.106.7 CTC7T04 1.1.1.1 P-pP 16 1 1
9.67.107.7 CTC7T05 0.0.0.0 P-pP 16 1 1
UNNUMBERED VL/0 0.0.0.0 VLINK 16 1 1

Displaying current, run-time statistics and parameters for a specific OSPF
interface: To display current, run-time statistics and parameters for a specific
OSPF interface, enter the following command:

D TCPIP,TCPCS7,0MP,0SPF,IF,NAME=CTC7T04
EZ778501 INTERFACE DETAILS 769

INTERFACE ADDRESS: 9.67.106.7

ATTACHED AREA: 1.1.1.1

PHYSICAL INTERFACE: CTC7T04

INTERFACE MASK: 255.255.255.0

INTERFACE TYPE: P-pP

STATE: 16

DESIGNATED ROUTER: 0.0.0.0

BACKUP DR: 0.0.0.0
DR PRIORITY: 1 HELLO INTERVAL: 10 RXMT INTERVAL: 5
DEAD INTERVAL: 40 TX DELAY: 1 POLL INTERVAL: 0
DEMAND CIRCUIT: OFF HELLO SUPPRESS: OFF SUPPRESS REQ: OFF
MAX PKT SIZE: 1024 TOS 0 COST: 1 AUTHTYPE: PASSWORD
NEIGHBORS: 1 # ADJACENCIES: 1 # FULL ADJS.: 1
MCAST FLOODS: 15 # MCAST ACKS: 4 DL UNICAST: OFF

MC FORWARDING: OFF

NETWORK CAPABILITIES:
POINT-TO-POINT
DEMAND-CIRCUITS

Displaying current, run-time statistics and parameters for OSPF neighbors:

To display current, run-time statistics and parameters for OSPF neighbors, enter the
following command:

D TCPIP,TCPCS7,0MP,0SPF,NBR

EZ778511 NEIGHBOR SUMMARY 771
NEIGHBOR ADDR NEIGHBOR ID STATE LSRXL DBSUM LSREQ HSUP IFC

9.67.104.16 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.104.25 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.104.15 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.100.8 8.8.8.8 128 0 0 0 OFF CTC7T08
9.67.102.3 3.3.3.3 128 0 0 0 OFF CTC7T03

198 2/0S V1R4.0 CS: IP Configuration Guide

9.67.106.4
9.67.107.5

VL/0

Displaying current run-time statistics and parameters for a specific OSPF
neighbor: To display current run-time statistics and parameters for a specific

4.4.4.4 128 0 0 0 OFF CTC7T04
5.5.5.5 128 0 0 0 OFF CTC7T05
4.4.4.4 128 0 0 0 OFF *

OSPF neighbor, enter the following command:

D TCPIP,TCPCS7,0MP,0SPF,NBR,IPADDR=9.67.106.4
EZ778521 NEIGHBOR DETAILS 779

NEIGHBOR IP ADDRESS: 9.67.106.4

OSPF ROUTER ID: 4.4.4.4

NEIGHBOR STATE: 128

PHYSICAL INTERFACE: CTC7T04

DR CHOICE: 0.0.0.0

BACKUP CHOICE: 0.0.0.0

DR PRIORITY: 1

NBR OPTIONS: E
DB SUMM QLEN: 0 LS RXMT QLEN: 0 LS REQ QLEN:
LAST HELLO: 4 NO HELLO: OFF
LS RXMITS: 1 # DIRECT ACKS: 0 # DUP LS RCVD:
OLD LS RCVD: 0 # DUP ACKS RCVD: 1 # NBR LOSSES:

Displaying routes to other routers that have been calculated by OSPF: To

0

6
0

display routes to other routers that have been calculated by OSPF, enter the
following command:

D TCPIP,TCPCS7,0MP,0SPF,ROUTERS
EZ778551 OSPF ROUTERS 781

DTYPE
ASBR
BR
ASBR
ASBR
BR
ASBR

RTYPE DESTINATION AREA cosT NEXT
SPF 2.2.2.2 0.0.0.0 2 9.67.
SPF 4.4.4.4 0.0.0.0 1 9.67.
SPF 5.5.5.5 0.0.0.0 1 9.67.
SPF 3.3.3.3 1.1.1.1 1 9.67.
SPF 4.4.4.4 1.1.1.1 1 9.67.
SPF 8.8.8.8 1.1.1.1 1 9.67.

HOP(S)
106.4
106.4
107.5
102.3
106.4
100.8

Displaying the number of LSAs currently in the link state database: To

display the number of LSAs currently in the link state database, categorized by

type, enter the following command:

D TCPIP,TCPCS7,0MP,0SPF,DBSIZE
EZ778541 LINK STATE DATABASE SIZE 783

Displaying statistics generated by the OSPF routing protocol: To display
statistics generated by the OSPF routing protocol, enter the following command:

ROUTER-LSAS: 8
NETWORK-LSAS: 0
SUMMARY-LSAS: 37
SUMMARY ROUTER-LSAS: 7
AS EXTERNAL-LSAS: 18
INTRA-AREA ROUTES: 24
INTER-AREA ROUTES: 1
TYPE 1 EXTERNAL ROUTES: 0

D TCPIP,TCPCS7,0MP,0SPF,STATS
EZ778561 OSPF STATISTICS 785

OSPF ROUTER 1ID: 7.7.7.7
EXTERNAL COMPARISON: TYPE 2

AS BOUNDARY CAPABILITY: YES

IMPORT EXTERNAL ROUTES: RIP SUB
ORIG. DEFAULT ROUTE: NO

DEFAULT ROUTE COST: (1, TYPE 2)
DEFAULT FORWARD. ADDR.: 0.0.0.0

ATTACHED AREAS: 2 OSPF PACKETS RCVD:

OSPF PACKETS RCVD W/ERRS:

0 TRANSIT NODES ALLOCATED:

TRANSIT NODES FREED: 47 LS ADV. ALLOCATED:

821
55
263

Chapter 4. Routing

199

LS ADV. FREED: 201 QUEUE HEADERS ALLOC: 96

QUEUE HEADERS AVAIL: 96 MAXIMUM LSA SIZE: 976
DIJKSTRA RUNS: 9 INCREMENTAL SUMM. UPDATES: 4
INCREMENTAL VL UPDATES: 0 MULTICAST PKTS SENT: 746
UNICAST PKTS SENT: 107 LS ADV. AGED OUT: 0
LS ADV. FLUSHED: 22 PTRS TO INVALID LS ADV: 0
INCREMENTAL EXT. UPDATES: 49

Displaying the routes in the OMPROUTE routing table: To display all of the
routes in the OMPROUTE routing table, enter the following command:

D TCPIP,TCPCS7,0MP,RTTABLE
EZZ78471 ROUTING TABLE 796

TYPE DEST NET MASK COST AGE NEXT HOP(S)
SBNT 2.0.0.0 FFO00000 1 1368 NONE

SPF 2.2.2.0 FFFFFFFC 3 1380 9.67.106.4
SPF 2.2.2.2 FFFFFFFF 3 1380 9.67.106.4
SBNT 3.0.0.0 FFO00000 1 1549 NONE

SPF 3.3.3.0 FFFFFFFC 2 1561 9.67.102.3
SPF 3.3.3.3 FFFFFFFF 2 1561 9.67.102.3
SBNT 4.0.0.0 FFO00000 1 1549 NONE

SPF 4.4.4.4 FFFFFFFC 2 1561 9.67.106.4
SPF 4.4.4.4 FFFFFFFF 2 1561 9.67.106.4
SBNT 5.0.0.0 FFO00000 1 1549 NONE

SPF 5.5.5.4 FFFFFFFC 2 1567 9.67.107.5
SPF 5.5.5.5 FFFFFFFF 2 1567 9.67.107.5
SBNT 6.0.0.0 FFO00000 1 1549 NONE

RIP 6.6.6.4 FFFFFFFC 2 30 9.67.103.6
SBNT 7.0.0.0 FFO00000 1 1368 NONE

SPIA~ 7.7.7.4 FFFFFFFC 3 1380 9.67.106.4
DIRx 7.7.7.7 FFFFFFFF 1 1574 VIPAIA
SBNT 8.0.0.0 FFO00000 1 1549 NONE

SPF 8.8.8.8 FFFFFFFC 2 1545 9.67.100.8
SPF 8.8.8.8 FFFFFFFF 2 1545 9.67.100.8
SBNT 9.0.0.0 FFO00000 1 1368 NONE

DIR* 9.67.100.0 FFFFFFOO 1 1576 9.67.100.7
SPF 9.67.100.7 FFFFFFFF 2 1545 CTC7T08
SPF 9.67.100.8 FFFFFFFF 1 1572 9.67.100.8
SPF 9.67.101.3 FFFFFFFF 2 1561 9.67.106.4
SPF 9.67.101.4 FFFFFFFF 2 1561 9.67.102.3
DIR* 9.67.102.0 FFFFFFOO 1 1575 9.67.102.7
SPF 9.67.102.3 FFFFFFFF 1 1566 9.67.102.3
SPF 9.67.102.7 FFFFFFFF 2 1561 CTC7T03
DIR* 9.67.103.0 FFFFFFOO 1 1575 9.67.103.7
RIP 9.67.103.6 FFFFFFFF 1 30 9.67.103.6
SPF 9.67.105.4 FFFFFFFF 2 1545 9.67.100.8
SPF 9.67.105.8 FFFFFFFF 2 1561 9.67.106.4
DIR* 9.67.106.0 FFFFFFOO 1 1576 9.67.106.7
SPF 9.67.106.4 FFFFFFFF 1 1566 9.67.106.4
SPF 9.67.106.7 FFFFFFFF 2 1561 CTC7T04
DIR* 9.67.107.0 FFFFFFOO 1 1577 9.67.107.7
SPF 9.67.107.5 FFFFFFFF 1 1574 9.67.107.5
SPF 9.67.107.7 FFFFFFFF 2 1566 CTC7T05
SPF 9.67.108.2 FFFFFFFF 2 1380 9.67.106.4
SPF 9.67.108.4 FFFFFFFF 3 1380 9.67.106.4
SBNT 10.0.0.0 FFO00000 1 1368 NONE

SPE2 10.1.1.0 FFFFFFOO 0 1379 9.67.106.4
SPE2 10.1.1.1 FFFFFFFF 0O 1379 9.67.106.4
SBNT 20.0.0.0 FFO00000 1 1549 NONE

SPE2 20.1.1.0 FFFFFFOO 0 1379 9.67.107.5
SPE2 20.1.1.1 FFFFFFFF 0 1379 9.67.107.5
RIP 30.0.0.0 FFO00000 2 30 9.67.103.6
RIP 30.1.1.0 FFFFFFOO 2 30 9.67.103.6
RIP % 30.1.1.4 FFFFFFFF 2 30 9.67.103.6
RIP % 30.1.1.8 FFFFFFFF 2 30 9.67.103.6
SPE2 130.200.0.0 FFFFOO00 0 1379 9.67.100.8 (2)

200 2/0S V1R4.0 CS: IP Configuration Guide

SPE2 130.200.1.1 FFFFFFFF 0 1379 9.67.102.3
SPE2 130.200.1.18 FFFFFFFF 0 1379 9.67.100.8
SPE2 130.201.0.0 FFFFO000 O 1379 9.67.100.8 (2)
SPE2 130.202.0.0 FFFFOO00 0 1379 9.67.100.8 (2)

0 NETS DELETED, 4 NETS INACTIVE

Displaying the routes to a specific destination: To display information about the
routes to a specific destination, enter the following command:
D TCPIP,TCPCS7,0MP,RTTABLE,DEST=130.201.0.0

EZZ78741 ROUTE EXPANSION 798
DESTINATION: 130.201.0.0

MASK: 255.255.0.0

ROUTE TYPE: SPE2

DISTANCE: 0

AGE: 1485

NEXT HOP(S): 9.67.100.8 (CTC7TO08)
9.67.102.3 (CTC7T03)

Displaying all of the RIP configuration information: To display all of the RIP
configuration information, enter the following command:

D TCPIP,TCPCS7,0MP,RIP,LIST,ALL

EZ778431 RIP CONFIGURATION 800

TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0

STACK AFFINITY: TCPCS7

RIP: ENABLED

RIP DEFAULT ORIGINATION: ALWAYS, COST =1

PER-INTERFACE ADDRESS FLAGS:

CTC7T06 9.67.103.7 RIP-2 MULTICAST.
SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0O

EZ778441 RIP ROUTE ACCEPTANCE
ACCEPT RIP UPDATES ALWAYS FOR:
30.1.1.8 30.1.1.4

Displaying information about configured RIP interfaces: To display information
about configured RIP interfaces, enter the following command:

D TCPIP,TCPCS7,0MP,RIP,LIST,IFS

EZZ78431 RIP CONFIGURATION 806

TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0

STACK AFFINITY: TCPCS7

RIP: ENABLED

RIP DEFAULT ORIGINATION: ALWAYS, COST =1

PER-INTERFACE ADDRESS FLAGS:

CTC7T06 9.67.103.7 RIP-2 MULTICAST.
SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0
RIP RECEIVE CONTROL: ANY

RIP RECEIVE CONTROL indicates what level of RIP updates can be received over
the interface. Values are:

ANY RIP1 and RIP2 updates can be received

RIP1 Only RIP1 updates can be received.

RIP2 Only RIP2 updates can be received.

Chapter 4. Routing 201

202

Displaying the routes to be unconditionally accepted: To display the routes to
be unconditionally accepted, as configured with the Accept_RIP_Route statement,
enter the following command:

D TCPIP,TCPCS7,0MP,RIP,LIST,ACCEPTED

EZZ78441 RIP ROUTE ACCEPTANCE 808

ACCEPT RIP UPDATES ALWAYS FOR:
30.1.1.8 30.1.1.4

Displaying current run-time information about RIP interfaces: To display
current, run-time information about RIP interfaces, enter the following command:
D TCPIP,TCPCS7,0MP,RIP,IF

EZZ78591 RIP INTERFACES 810

IFC ADDRESS IFC NAME SUBNET MASK MTU DESTINATION
9.67.103.7 CTC7T06 255.255.255.0 1024 0.0.0.0

Displaying current run-time information about a specific RIP interface: To
display current, run-time information about a specific RIP interface, enter the
following command:

D TCPIP,TCPCS7,0MP,RIP,IF,NAME=CTC7T06
EZZ78601 RIP INTERFACE DETAILS 812

INTERFACE ADDRESS: 9.67.103.7

INTERFACE NAME: CTC7T06

SUBNET MASK: 255.255.255.0

MTU 1024

DESTINATION ADDRESS: 0.0.0.0

RIP VERSION: 2 SEND POIS. REV. ROUTES: YES
IN METRIC: 1 OUT METRIC: 0
RECEIVE NET ROUTES: YES RECEIVE SUBNET ROUTES: YES
RECEIVE HOST ROUTES: NO SEND DEFAULT ROUTES: NO
SEND NET ROUTES: YES ~ SEND SUBNET ROUTES: YES
SEND STATIC ROUTES: NO SEND HOST ROUTES: NO

RIP RECEIVE CONTROL: ANY

SEND ONLY: ALL

RIP RECEIVE CONTROL indicates what level of RIP updates can be received over
the interface. Values are:

ANY RIP1 and RIP2 updates can be received.

RIP1 Only RIP1 updates can be received.

RIP2 Only RIP2 updates can be received.

Displaying the global RIP filters: To display the global RIP filters, enter the
following command:
D TCPIP,TCPCS7,0MP,RIP,FILTERS

EZ780161 GLOBAL RIP FILTERS 814
SEND ONLY: ALL

FILTERS: NOSEND 10.1.1.0 255.255.255.0
EZ780261 IGNORE RIP NEIGHBOR

9.67.103.9

9.67.103.10

Sample OMPROUTE configuration files

The following is an example of a pure OSPF environment (from TCPCS4 in the
[Figure 33 on page 158).

RouterID=4.4.4.4;

Area

Area_Number = 0.0.0.0;
Area

z/OS V1R4.0 CS: IP Configuration Guide

OSPF_

OSPF_

OSPF_

Area_Number = 1.1.1.1;
Interface
IP_Address=9.67.108.4
Name = CTC4T02
Subnet_Mask=255.255.255.0
Attaches_To_Area=0.0.0.0
MTU = 1024

Cost0d = 1;

Interface
IP_Address=9.67.106.4
Name = CTC4TO7
Subnet_Mask=255.255.255.0
Attaches_To Area=1.1.1.1
MTU = 1024

Cost0 = 1;

Interface
IP_Address=9.67.105.4
Name = CTC4T08
Subnet_Mask=255.255.255.0
Attaches_To Area=1.1.1.1
MTU = 1024

CostO = 1;

OSPF_Interface

IP_Address=9.67.101.4
Name = CTC4T03
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024

CostO = 1;

OSPF_Interface

Virtu

IP_Address=4.4.4.4
Name = VIPAIA

Subnet_Mask=255.255.255.252

Attaches_To_Area=1.1.1.1
CostO = 1;
al_Link

Virtual_Endpoint_RouterID=7.7.7.7

Links Transit Area=1.1.1.1;

The following is an example of mixed OSPF and RIP environments (from TCPCS7

in [Figure 33 on page 158).

sHRERR KR A Ak hhhdhhdhrhhhhhrhhdhrhrdhk

; OSPF Configuration Statements

*

sERFFK Rk kdkkkkkkkkkdkkkkkkkkdkkkkkkkk

Route
Area

Area

AS_Bo

riD=7.7.7.7;
Area_Number = 0.0.0.0;

Area_Number = 1.1.1.1;
undary_Routing
Import_Subnet Routes=YES
Import_RIP_Routes=YES;

OSPF_Interface

IP_Address=9.67.107.7
Name = CTC7T05
Subnet_Mask=255.255.255.0
Attaches_To_Area=0.0.0.0
MTU = 1024

CostO = 1;

OSPF_Interface

IP_Address=9.67.106.7
Name = CTC7T04
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024

CostO = 1;

Chapter 4. Routing

203

204

OSPF_Interface
IP_Address=9.67.102.7
Name = CTC7T03
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
CostO = 1;

OSPF_Interface
IP_Address=9.67.100.7
Name = CTC7T08
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
CostO = 1;

OSPF_Interface
IP_Address=9.67.104.7
Name = NBMA7
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
Non_Broadcast=YES
NB_Pol1_Interval=180
MTU = 1024
Cost0 =1
DR_Neighbor=9.67.104.15
No_DR_Neighbor=9.67.104.16
No_DR_Neighbor=9.67.104.25;

OSPF_Interface
IP_Address=7.7.7.7
Name = VIPA1A
Subnet_Mask=255.255.255.252
Attaches To Area=1.1.1.1
CostO = 1;

Range
IP_Address=9.67.101.0
Subnet_Mask=255.255.255.0
Area Number=1.1.1.1
Advertise=NO;

Virtual Link
Virtual_Endpoint_RouterID=4.4.4.4
Links_Transit_Area=1.1.1.1;

H khkkkhkhkkhkhkkhkhhhkhhkkhkhhkhkhhkhkhkhkhkhkhk*x

5 RIP Configuration Statements =*

H khkkkkhkhkkkhkkkhkkkhkkkhkhkkhkhkkhkhkkhkhkkkhk*x

Originate_RIP_Default
Condition=ATways;

Accept_RIP_Route
IP_Address=30.1.1.4;

Accept_RIP_Route
IP_Address=30.1.1.8;

Filter=(nosend,10.1.1.0,255.255.255.0);

RIP_Interface
IP_Address=9.67.103.7
Name = CTC7T06
Subnet_Mask=255.255.255.0
Receive_Dynamic_Hosts=NO
MTU = 1024
RipV2=YES;

The following is an example of a pure RIP environment (from TCPCS6 in
on page 158).

RIP_Interface
IP_Address=9.67.103.6
Name = CTC6TO07
Subnet_Mask=255.255.255.0
MTU = 1024
Send_Static_Routes=YES

z/OS V1R4.0 CS: IP Configuration Guide

Send_Host_Routes=YES
RipV2=YES;

Interface
IP_Address=6.6.6.6
Name = VIPAlA
Subnet_Mask=255.255.255.252;

IPv6 dynamic routing

Enabling IPv6 router discovery in zZOS Communications Server requires no
additional z/OS Communications Server configuration. All that is needed is at least
one IPv6 interface that is defined and started, and at least one adjacent router
through that interface that is configured for IPv6 router discovery. If these things
exist, then z/OS Communications Server begins receiving router advertisements
from the adjacent routers. Depending on the configuration in the adjacent routers,
the following types of routes may be learned from the received router
advertisements:

» Default route for which the originator of the router advertisement is the next hop

+ Direct routes (no next hop) to prefixes that reside on the link shared by z/OS
Communications Server and the originator of the router advertisement.

Multiple default routes and multiple direct prefix routes to a single prefix may be
learned through router advertisements. If an adjacent router resides on a link onto
which z/OS Communications Server TCPIP has multiple IPv6 interfaces, there will
be multiple routes to each route learned through the adjacent router’s router
advertisement (one route through each interface onto the link). Also, if default
routes are learned from the router advertisements originated by multiple adjacent
routers, there will be multiple default routes (one with each of these adjacent
routers as next hop). When this condition of multiple routes exists, TCP/IP will use
those routes according to the setting of the MULTIPATH parameter on the
IPCONFIG6 statement.

If there are static non-replaceable routes to the destinations in the router
advertisements, the dynamic routes will not be added to the stack routing table.

Verification of routing (Static and dynamic)

 |f static routes are used, an indirect route must not be defined before the route to
its first hop is defined. The following example shows an incorrect configuration.

BEGINRoutes ;first BEGINRoutes in the profile

;Network/mask FirstHop LinkName PacketSize
Route 9.67.104.0/24 9.67.105.8 CTCATO8 MTU 1500
Route 9.67.105.0/24 = CTC4T08 MTU 1500
Route FECO:0:0:A1B::/64 FE80::1:2:3:3 0SAQDI046 MTU 5000
Route FE80::1:2:3:3/128 = 0SAQDIO46 MTU 5000
ENDRoutes

When configured incorrectly, the following error messages are displayed:

EZZ06571 ROUTE LIST ENTRY ON LINE 28 FOR DESTINATION 9.67.104.0 IS
UNREACHABLE THROUGH INTERFACE 9.67.105.8 ON CTCATO08
EZZ06571 ROUTE LIST ENTRY ON LINE 30 FOR DESTINATION FEC0:0:0:A1B:: IS
UNREACHABLE THROUGH INTERFACE FE80::1:2:3:3 ON 0SAQDIO46

e |f OMPROUTE is used for the OSPF protocol only and AUTOLOG is not
configured correctly (see [‘Autolog considerations for OMPROUTE” on page 172),
OMPROUTE will be periodically restarted and the following messages are
displayed:

Chapter 4. Routing 205

$HASP100 OMPROUTE ON STCINRDR
$HASP373 OMPROUTE STARTED
IEF4031 OMPROUT1 - STARTED

OMPROUT1 OMPROUTE BPXBATCH 0000
EZZ78001 OMPROUTE STARTING
EZZ78721 OMPROUTE FOUND ANOTHER ROUTING APPLICATION ALREADY ACTIVE
EZZ80741 OMPROUTE PROCESSING ERROR
EZZ78051 OMPROUTE EXITING ABNORMALLY - RC(11)
OMPROUT1 *OMVSEX BPXPRECP 0011
IEF4041 OMPROUT1 - ENDED
$HASP395 OMPROUT1 ENDED

 If a configuration statement in the OMPROUTE configuration file has a missing
semicolon, the syntax checker might issue the following message:

EZZ78301 SYNTAX ERROR AT LINE 22 OF OMPROUTE CONFIGURATION FILE
PROCESSING END OF FILE

Verifying connections with NETSTAT, PING, and TRACERTE

The interfaces were verified with the instructions in|[Chapter 1, “Configuration|
foverview” on page 3| The first thing to verify is that the devices and interfaces are
started. In the case of point-to-point links like the CTCs in TCPCS4, the following
message is written to the z/OS console when the device starts:

EZ743131 INITIALIZATION COMPLETE FOR DEVICE CTCE02

In the case of IPv6 interfaces like OSAQDIO46 in TCPCS4, the following message
is written to the z/OS console when the interface starts:

EZ743401 INITIALIZATION COMPLETE FOR INTERFACE 0SAQDIO46

The same information can be determined from NETSTAT DEV. Following is a
portion of the output of NETSTAT DEV with the CTCEOQ2 device shown as ready.
The NETSTAT DEV can be issued on TCPCS4 and TCPCS7 to verify that the
devices on both systems are ready.

DEVNAME: CTCEO2 DEVTYPE: CTC DEVNUM: OE00
DEVSTATUS: READY
LNKNAME: CTC4TO7 LNKTYPE: CTC LNKSTATUS: READY
NETNUM: O QUESIZE: 0O
BYTESIN: 488 BYTESOUT: 1092

ACTMTU: 32760
BSD ROUTING PARAMETERS:

MTU SIZE: 01500 METRIC: 01

DESTADDR: 0.0.0.0 SUBNETMASK: 255.255.255.0
MULTICAST SPECIFIC:

MULTICAST CAPABILITY: YES

GROUP REFCNT
224.0.0.5 0000000001
224.0.0.1 0000000001

Following is a portion of the output of NETSTAT DEV with an IPv6 interface
(OSAQDIO46) shown as ready.

DEVNAME: 0SAQDIOZ2 DEVTYPE: MPCIPA
DEVSTATUS: READY
INTFNAME: OSAQDIO46 INTFTYPE: IPAQENET6 INTFSTATUS: READY
NETNUM: O QUESIZE: 0 SPEED: 0000001000
BYTESIN: 592 BYTESOUT: 1008

MACADDRESS: 0002559A3F65
DUPADDRDET: 1

CFGROUTER: NON ACTROUTER: NON
RTRHOPLIMIT: 5
CFGMTU: NONE ACTMTU: 8992

MULTICAST SPECIFIC:

206 2/0S V1R4.0 CS: IP Configuration Guide

MULTICAST CAPABILITY: YES
REFCNT GROUP
0000000001 FFO2::1:FF03:1
0000000001 FFO2::1

If the devices do not have a LnkStatus or IntfStatus of Ready, this must be resolved
before continuing. There are several things that might cause the LnkStatus or
IntfStatus to not be ready. For example, the device might not be defined to z/OS
correctly, the device might not be defined in PROFILE.TCPIP correctly, and so on.

You can PING each others hosts within the network to verify indirect routes exist.

ping 9.67.107.7

CS VIR4: Pinging host 9.67.107.7

Ping #1 response took 0.048 seconds.

READY
ping fec0:0:0:alb:2:559a:3f65:3

CS VIR4: Pinging host fec0:0:0:alb:2:559a:3f65:3
Ping #1 response took 0.051 seconds.

READY

Use TRACERTE to verify that the correct route is being taken for each indirectly
attached host:

tracerte 9.67.107.5

CS V1R4: Traceroute to 9.67.107.5 (9.67.107.5)
19.67.106.7 (9.67.106.7) 40 ms 7 ms 6 ms
2 9.67.107.5 (9.67.107.5) 9 ms 8 ms 9 ms
READY

Following is an IPv6 example for indirectly attached hosts:

tracerte fec0:0:0:alc:2:36a4:b3%a:7

CS VIR4: Traceroute to fec0:0:0:alc:2:36a4:b39%a:7
at IPv6 address: fec0:0:0:alc:2:36a4:b39%a:7

1 fe80::1:2:3:4

(fe80::1:2:3:4) 13 ms 25 ms 40 ms

2 fec0:0:0:alc:2:36a4:b39%a:7
(fec0:0:0:alc:2:36a4:b39%9a:7) 29 ms 263 ms 196 ms

Chapter 4. Routing 207

208 2/0S V1R4.0 CS: IP Configuration Guide

Chapter 5. Virtual IP Addressing

This chapter contains information about the following topics:
» Terminology

* Introduction to VIPA

* Moving VIPA (Upon outage of TCP/IP)

» Static VIPAs, Dynamic VIPAs (DVIPAs), and Distributed Dynamic VIPAs
* Using static VIPAs

* Using Dynamic VIPAs (DVIPASs)

» Choosing which form of Dynamic VIPA to use

» Configuring Distributed DVIPAs — Sysplex Distributor

* Resolution of DVIPA conflicts

» Other considerations

* DVIPAs and routing protocols

Terminology

Virtual IP Address (VIPA)
A VIPA is a generic term that refers to an internet address on a z/OS host

that is not associated with a physical adapter. There are two types of
VIPAs:

* A Static VIPA cannot be changed except through a VARY
TCPIP,,OBEYFILE operator command.

* A Dynamic VIPA (DVIPA) can move to other TCP/IP stack members in a
sysplex or it can be activated by an application program or by a supplied
utility. Dynamic VIPAs are used to implement Sysplex Distributor as
described in [‘Considerations for VIPA” on page 65

Distributed DVIPA
A distributed DVIPA, which is a special type of DVIPA, can distribute
connections within a Sysplex.

Dynamic routing
VIPAs are designed to interoperate with a dynamic routing daemon.
Therefore, it is highly recommended that a routing daemon be used on a
z/OS host that uses VIPAs.

Introduction to VIPA

Traditionally, an IP address is associated with each end of a physical link (or each
point of access to a shared-medium LAN), and the IP addresses are unique across
the entire visible network, which can be the Internet or a closed intranet. The
majority of IP hosts have a single point of attachment to the network, but some
hosts (particularly large server hosts) have more than one link into the network. A
TCP/IP host with multiple points of attachment also has multiple IP addresses, one
for each link.

Within the IP routing network, failure of any intermediate link or adapter disrupts
end user service only if there is not an alternate path through the routing network.
Routers can route IP traffic around failures of intermediate links in such a way that
the failures are not visible to the end applications or IP hosts. However, because an
IP packet is routed based on ultimate destination IP address, if the adapter or link

© Copyright IBM Corp. 2000, 2002 209

210

associated with the destination IP address fails, there is no way for the IP routing
network to provide an alternate path to the stack and application. Endpoint (source
or destination) IP adapters and links thus constitute single points of failure. While
this might be acceptable for a client host, where only a single user will be cut off
from service, a server IP link might serve hundreds or thousands of clients, all of
whose services would be disrupted by a failure of the server link.

The Virtual IP Address (VIPA) removes the adapter as a single point of failure by
providing an IP address that is associated with a stack without associating it with a
specific physical network attachment. Because the virtual device exists only in
software, it is always active and never experiences a physical failure. A VIPA has no
single physical network attachment associated with it. Also, the TCP/IP stack does
not maintain interface counters for VIPA interfaces (VIRTUAL links).

To the routing network, a VIPA appears to be a host address indirectly attached to
the z/OS. When a packet with a VIPA destination reaches the stack, the IP layer
recognizes the address and passes it to the protocol layer in the stack.

The failure of the physical interface can be extended to the failure of the TCP/IP
address space, the entire z/OS, or for planned outages. A VIPA just needs to move
to a backup stack, and the routes to the VIPA need to be updated. Then clients can
transparently connect to the backup stack. This process is known as VIPA Takeover.

VIPA Takeover improved with the introduction of Dynamic Virtual IP Address
(DVIPA) and Distributed Dynamic Virtual IP Address (Distributed DVIPA). The
DVIPA function improves VIPA Takeover by allowing a system programmer to plan
for system outages and provide for backup systems to take over without operator
intervention or external automation. The Distributed DVIPA function allows the
connections for a single DVIPA to be serviced by applications on several stacks
listed in the configuration statement (the distribution list). This adds the benefit of
limiting the scope of an application or stack failure, while also providing enhanced
work load balancing.

In general, z/OS configured with VIPA provides the following advantages:
» Automatic and transparent recovery from device and adapter failure.

When a device (for example, 3172, or channel-attached 2216) or adapter (for
example, a Token Ring or FDDI card) fails, if there is another device or link that
provides the alternate paths to the destination:

— IP will detect the failure, find an alternate path for each network, and route
outbound traffic to hosts and routers on those networks via alternate paths.

— Inbound and outbound traffic will not need to reestablish the active TCP
connections that were using the failed device.

* Recovery from z/OS TCP/IP stack failure (where an alternate z/OS TCP/IP stack
has the necessary redundancy).

Assuming that an alternate stack is installed to serve as a backup, the use of
VIPAs enables the backup stack to activate the VIPA address of the failed stack.

Connections on the failed primary stack will be disrupted but they can be
reestablished on the backup using the same IP as the destination. In addition,
the temporarily reassigned VIPA address can be restored to the primary stack
after the cause of failure has been removed.

Note: For connection requests originating at a z/OS TCP/IP stack, tolerance of
device and adapter failures can be achieved by using the SOURCEVIPA
option. For IPv6 connection requests to have the same tolerance, the IPv6

z/OS V1R4.0 CS: IP Configuration Guide

SOURCEVIPA configuration option must be enabled and a VIPA interface
must be specified with the SOURCEVIPAINT keyword on the INTERFACE
statement associated with the failed device or adapter.

With this option, static VIPA addresses are used as the source IP
addresses in outbound datagrams for TCP, RAW, UDP (except routing
protocols), and ICMP requests.

» Limited scope of a stack or application failure.

If a DVIPA is distributed among several stacks, the failure of only one stack
affects only the subset of clients connected to that stack. If the distributing stack
experiences the failure, a backup assumes control of the distribution and
maintains all existing connections.

» Enhanced workload management through distribution of connection requests.
With a single DVIPA being serviced by multiple stacks, connection requests and
associated workloads can be spread across multiple z/OS images according to
Workload Manager (WLM) and Service Level Agreement policies (for example,
QOS).

» Allows the non-disruptive movement of an application server to another stack so
that workload can be drained from a system in preparation for a planned outage.

Moving a VIPA (For TCP/IP outage)

While a VIPA provides non-disruptive rerouting of IP data during failure of a physical
interface, termination of the stack or the associated z/OS (including planned
outages) will disrupt connections or UDP sessions to applications on the terminated
stack. While failure of the TCP connection or UDP session will be visible to the
clients, the duration of the outage is determined by how long the client application is
unable to reconnect to an appropriate server application. Because it is common in
large enterprises to have multiple instances of an application residing on different
z/OS images, if the VIPA address can be moved to another stack that supports the
application, the clients can reconnect and the perceived outage will be over.

An IP address associated with a particular physical device is unavailable until the
owning stack is restarted; however, a VIPA is not associated with any particular
physical interface. If termination of a stack is detected and a suitable application
already is active on another stack, the VIPA can be moved. Connections on the
terminated stack will be disrupted, but they can be reestablished on the backup
stack using the original VIPA.

Movement of a static VIPA to a backup stack can be accomplished by using VARY
TCPIP,,OBEYFILE commands on the backup. The OBEYFILE data set must contain
an appropriate set of DEVICE, LINK, HOME, and optionally, BSDROUTINGPARM
statements for IPv4 static VIPAs or INTERFACE statements for IPv6 static VIPAs. If
OMPROUTE is used as the routing daemon, an appropriate interface statement is
needed in the OMPROUTE configuration file. If the TCP/IP configuration file with
the statements defining the VIPA is created in advance, the transfer can be
accomplished via automation. This procedure is documented in
|Communications Server: IP Configuration Referencel Movement of a DVIPA, on the
other hand, can be accomplished by configuring a stack to backup a specific DVIPA
that is defined on another stack. In this case, failure of the defining stack causes
the DVIPA to move without operator intervention or extra automation. See
ffor Dynamic VIPA Takeover” on page 216|for more information. Regardless of the
type of VIPA to be moved, it is up to the system programmer or operator to ensure
that the VIPA is moved to a backup stack that has the appropriate server
applications.

Chapter 5. Virtual IP Addressing 211

In the absence of a failure, a VIPA is just like any other IP address, and routing for
a VIPA is the same as for an IP address associated with a physical link.

Static VIPAs, Dynamic VIPAs (DVIPAs), Distributed DVIPAs

212

z/OS TCP/IP stack supports two types of VIPAs: static and dynamic. Dynamic
VIPAs (DVIPAs) can be used to distribute connections in a sysplex. This is referred
to as a Distributed DVIPA.

All three VIPAs can coexist on a given stack, but there are differences in how these
VIPAs are configured and used.

Static VIPAs have the following characteristics:

* They can be activated during TCP/IP initialization or VARY TCPIP,,OBEYFILE
processing, and are configured using an appropriate set of DEVICE, LINK,
HOME, and optionally, OMPROUTE configuration statements or
BSDROUTINGPARMS statements for IPv4 Static VIPAs or INTERFACE
statements for IPv6 Static VIPAs.

» Using the SOURCEVIPA configuration option, static VIPAs can be used as the
source IP address for outbound datagrams for TCP, RAW, UDP (except routing
protocols), and ICMP requests. For IPv6 static VIPAs to be used as source
addresses, the SOURCEVIPA configuration option must be enabled and the VIPA
interface must appear on the SOURCEVIPAINT keyword on some other
INTERFACE statement. This provides tolerance of device and adapter failures for
connection requests originating at a z/OS TCP/IP stack.

* They can be moved to a backup stack after the original owning stack has failed,
by using VARY TCPIP,,OBEYFILE processing to configure the VIPA on the
backup stack and updating the routers.

* The number of static VIPAs on a stack is limited only by the range of host IP
addresses that are available for that host.

Dynamic VIPAs have the following characteristics:

» They can be configured to be moved dynamically from a failing stack to a backup
stack within the same sysplex without operator intervention or external
automation.

* They can be dynamically activated by an application program.

* They can distribute connections within a sysplex.

* They can be specified on a TCPSTACKSOURCEVIPA statement. This allows a
user to specify one Dynamic VIPA to be used as the source IP address for
outbound datagrams for TCP-only requests.

* Unlike static VIPAs, Dynamic VIPAs:

— Are limited to 256 per stack.
— Cannot be specified as the VIPA used by Enterprise Extender for connectivity

purposes. (See [‘Configuring static VIPAs for Enterprise Extender” on|
|page 214| for details.)

Distributed DVIPAs have the following characteristics:

» Have all the characteristics of DVIPAs, but cannot be dynamically activated by an
application program.

» One stack defines a DVIPA and advertises its existence to the network. Stacks in
the target distribution list activate the DVIPA and accept connection requests.

» Connection workload can be spread across several stacks.

z/OS V1R4.0 CS: IP Configuration Guide

See [‘Configuring Distributed DVIPAs — Sysplex Distributor” on page 224| for more
detailed descriptions.

Using static VIPAs

The following sections describe how to configure static VIPAs, the special case of
static VIPAs and Enterprise Extender, and how to implement static VIPA Takeover.

Because a VIPA is associated with a z/OS TCP/IP stack and it is not associated
with a specific physical network attachment, it can be moved to a stack on any
image in the sysplex or even to any z/OS TCP/IP stack if the address fits into the
network configuration.

Configuring static VIPAs for a z/OS TCP/IP stack

To configure a static VIPA address in one stack, follow these steps:

1. When configuring static VIPAs for the IPv4 network, add VIPA DEVICE, LINK,
HOME, and optionally, BSDROUTINGPARMS statements for each static VIPA to
be defined. When configuring static VIPAs for the IPv6 network, add
INTERFACE statements of type VIRTUALSG for each static VIPA to be defined.

Note: A VIPA link or VIPA interface cannot be coded on a static route in the
GATEWAY or BEGINROUTES statements.

2. For IPv4 networks, if tolerance of device and adapter failures is desired for
connection requests originating at a zZOS TCP/IP stack, specify the
SOURCEVIPA option in the IPCONFIG statement. For this option to work
properly, the receiving nodes in the network must be configured to recognize the
SOURCEVIPA addresses using the static or dynamic routing protocols.
Otherwise, timeouts for the connection or request responses will occur as a
result of the VIPA addresses being network unreachable. If
TCPSTACKSOURCEVIPA is specified, it overrides SOURCEVIPA for outbound
IPv4 TCP connections. For more information on configuring IPv4 SOURCEVIPA
or TCPSTACKSOURCEVIPA addresses, refer to|z/0S Communications Server]
[IP Configuration Referencd.

3. For IPv6 networks, if tolerance of device and adapter failures is desired for
connection requests originating at a z/OS TCP/IP stack, specify the
SOURCEVIPA option in the IPCONFIG6 statement and specify a VIPA interface
with the SOURCEVIPAINTerface keyword on the INTERFACE statement of the
real (physical) interface. For more information on configuring IPv6
SOURCEVIPA addresses, refer to|z/0S Communications Server: IH
[Configuration Referencel

4. For host name resolution of a VIPA address, configure the domain name
servers to associate the host name with the VIPA.

5. Configure the routing daemon to advertise the presence of the VIPA (IPv4 only;
dynamic routing protocols for IPv6 are not supported).

|Figure 34 on page 214|i||ustrates a simple configuration showing multiple network
attachments using a single static VIPA address. Since any other network interface
can be used with static VIPA’s, refer to ['Setting up physical characteristics in|
IPROFILE.TCPIP” on page 115|for descriptions of other network interfaces. The
simple configuration will be used as the TCPCS6 system throughout this chapter.

Chapter 5. Virtual IP Addressing 213

TCPCS6
z/0S

VIPA | 9.1.1.1

FECO0::9:67:115:5

50C9:C2D4:0:A:9:67:115:5

Device Drivers

Devicel Device2
TR1 TR2 ETH1 ETH2
9.2.1.1 2 9.3.1.1 9.3.1.2
FE80::5:2900:40DC:217C FE80::6:2900:40DC:217C
FECO0::5:2900:40DC:217C FECO0::6:2900:40DC:217C
50C9:C2D4::5:2900:40DC:217C 50C9:C2D4::6:2900:40DC:217C
LAN2
.3
LAN1 FECO0::206:2AFF:FE66:C800
3
Router2
Router1

2
FECO0::1:206:2AFF:FE66:C800

10.1.1.1

Host

FE80::260:8FF:FEF6:E46E
FECO0::11:9:67:114:44
50C9:C2D4:0:1:260:8FF:FEF6:E46E

Figure 34. Static VIPA configuration

Configuring static VIPAs for Enterprise Extender

Defining at least one static VIPA is required by VTAM to access the IP network.
Since VTAM does not move within a sysplex, a dynamic VIPA cannot be used.
VTAM will use the VIPA address specified on the VTAM IPADDR start option. If the
option is not used, VTAM will use the first static VIPA in the HOME list. If remote
APPN nodes use a host name and not a host address to define the destination of
an Enterprise Extender connection, the domain name server must return the VIPA
address used by VTAM for the host name.

For more information about Enterprise Extender, refer to the following:

+ [0S Communications Server: SNA Network Implementation Guidd

+ |http://www.ibm.com/software/network/library/whitepapers/eextender.html|

+ |http://www.ibm.com/software/network/library/whitepapers/eemsthtm/eemst.htm|
* IBM Redbook, SNA and TCP/IP Integration (SG24-5291-00)

214 2/0S V1R4.0 CS: IP Configuration Guide

http://www.ibm.com/software/network/library/whitepapers/eextender.html
http://www.ibm.com/software/network/library/whitepapers/eemsthtm/eemst.htm

Note: This document is also available at |http://www.redbooks.ibm.com|

Considerations when using static VIPAs with IPv6

When static VIPAs are configured for use with IPv6, it is recommended that the
prefixes of the IPv6 VIPA addresses be different than the prefixes used for
addresses assigned to real interfaces. This reduces the likelihood of address
collisions between the manually configured VIPA addresses and the autoconfigured
addresses of the real interfaces.

To allow other hosts that share links with the z/OS TCP/IP stack to access the IPv6
VIPA addresses, without the need for manual route configuration, a router on each
of the links should include the VIPA prefix in its router advertisements. The router
advertisements should define the prefix as being on-link and should indicate that
the prefix should not be used for autoconfiguration.

Planning for static VIPA Takeover and Takeback

Because a VIPA is associated with a z/OS TCP/IP stack and is not associated with
a specific physical network attachment, it can be moved to a stack on any image in
the sysplex or even to any z/OS TCP/IP stack as long as the address fits into the
network configuration. Moving a static VIPA can be done manually by an operator
or by customer-programmed automation. Movement of the static VIPA allows other
hosts that were connected to the primary stack to reestablish connections with a
backup TCP/IP stack using the same VIPA. After the primary TCP/IP stack has
been restored, the reassigned VIPA address can be moved back.

Consider the following when backing up and restoring a z/OS TCP/IP stack:
» All connections on the failing host will be disrupted.

* The client can use any ephemeral port number when reestablishing the
connection to the backup server.

* Having a different port number for the backup and primary server is not
recommended. For example, if the primary FTP used port 21 and the backup
FTP used port 1021, when backing up and restoring a z/OS TCP/IP stack, the
client would have to know whether to use port 21 or 1021.

Using Dynamic VIPAs (DVIPAS)

DVIPA support allows:
* Dynamic movement of a VIPA from a failing TCP/IP stack to a backup stack
» Dynamic allocation of a VIPA by an application program

Dynamic VIPAs (DVIPAs) are IP addresses like all other IP addresses associated
with a TCP/IP, and they appear as though they had been defined at the end of the
HOME list.

Configuring Dynamic VIPA (DVIPA) support

Unlike static VIPAs, DVIPAs are not configured using DEVICE, LINK, and HOME
statements. The configuration statements for the DVIPA support are contained
within the VIPADYNAMIC and ENDVIPADYNAMIC block and consist of the
following:

» VIPADEFINE and VIPABACKUP statements used to configure DVIPAs to be
dynamically moved from a failing TCP/IP to a backup TCP/IP

* VIPARANGE used to specify a range of IP addresses which may be dynamically
activated as a VIPA by an application program

Chapter 5. Virtual IP Addressing 215

http://www.redbooks.ibm.com

* VIPADELETE used to delete existing DVIPAs

* VIPADISTRIBUTE used to configure a DVIPA as a distributed DVIPA and
designate the target stacks

The following sections discuss how these statements are used to provide the
DVIPA support. For syntax details, see Iz/OS Communications Server: IP|
|Configuration Reference,

When Dynamic VIPAs (DVIPAs) are used for VIPA Takeover together with
DNS/WLM in a sysplex, code all of the DVIPAs in the sysplex under each host
name in the DNS forward domain data file for the cluster zone. This will circumvent
manual intervention in the DNS data files when a DVIPA is taken over or given back
and will not cause any undesirable effects in DNS/WLM function.

Planning for Dynamic VIPA Takeover

216

Movement by network management automation or operator intervention is not
always desirable. Operator intervention takes time and is subject to errors.
Automation requires proper detection of the failure and is also prone to error if the
failure does not produce the exact console messages anticipated.

Dynamic VIPA Takeover function addresses this problem. It is important to
understand that Dynamic VIPA Takeover does not introduce functions that could not
be accomplished by operator action or automation. It just removes the dependency
on human detection of the error or customer programming for automation. Dynamic
VIPA Takeover is completely accomplished by the TCP/IP stacks.

DVIPA Takeover is possible when a DVIPA is configured as active (via
VIPADEFINE) on one stack and as backup (via VIPABACKUP) on another stack
within the sysplex. When the stack on which the DVIPA is active terminates, then
the backup stack will automatically activate the DVIPA and notify the routing
daemon. For DVIPA Takeover to be useful, the applications that service the DVIPA
addresses must be available on the backup stacks. In the absence of the
application, the DVIPA will be active, but client connections to the application will
still fail.

A determination of how the workload will be distributed among the backup stacks
when the primary stack fails should be made. It is possible to designate a single
stack as a backup and move all the workload to it, or the workload can be spread
among several stacks. In the first case, only one DVIPA must be configured with a
VIPADEFINE statement on the primary stack, and only one VIPABACKUP
statement is required on the backup stack. The second option requires the definition
of a VIPABACKUP statement for each stack that will assume responsibility for a
subset of the primary’s workload.

After determining the workload distribution, each of the secondary stacks will
require a VIPABACKUP statement for the DVIPA it will be supporting.

The following example shows how to implement a single stack backup for multiple
applications.

z/OS V1R4.0 CS: IP Configuration Guide

TCPCS6 TCPCS2 TCPCS3

DIST

—201.2.10. ;‘/ Port 201.2.10.2
.14 201.2.10.13¢—
° _>201.2.10.1 =y 20,21 1210 > 01.2.10.22'13\
Backup / Backup
to TCPCS to TCPCS2 201.2.10.13
201.2.10.11

™~ 201.2.10.11
201.2.10.13 — 201.2.10.12 Backup 201.2.10.12
201.2.10.21 Backup 201.2.10.21 — 1o TCPCS3
201.2.10.22 to TCPCS2 201.2.10.22 —|
N

to TCPCS
Backup I
=
VIPA VIPA
Range +201.2.10.192-255 201.2.10.192-255 Range 201.2.10.192-255

Figure 35. Sample DVIPA addressing in a sysplex environment

Stack TCPCS:

Uses VIPADEFINE to define 201.2.10.11
Has a Web server running that binds to INADDR_ANY.

Web client programs use 201.2.10.11 as their destination address.
Has an FTP server running that binds to INADDR_ANY.

FTP client programs use 201.2.10.11 as their destination address.

Stack TCPCS3:

Uses VIPABACKUP to define 201.2.10.11 as backup for stack TCPCS.
Has a Web server running that binds to INADDR_ANY.
Has an FTP server running that binds to INADDR_ANY.

In the preceding scenario, when stack TCPCS goes down, stack TCPCSS3 receives
all new connection requests for both the Web and FTP servers. FTP and Web client
programs continue to use 201.2.10.11 as their destination address, but they now
connect to stack TCPCSS3.

The following example shows how to implement a multiple stack backup for multiple
applications.

Stack TCPCS:

Uses VIPADEFINE to define 201.2.10.11 and 201.2.10.12
Has a Web server running that binds to INADDR_ANY.

Web client programs use 201.2.10.11 as their destination address.
Has an FTP server running that binds to INADDR_ANY.

FTP client programs use 201.2.10.12 as their destination address.

Stack TCPCS2:

Uses VIPABACKUP to define 201.2.10.11 as backup for stack TCPCS.
Has a Web server running that binds to INADDR_ANY.

Stack TCPCS3:

Uses VIPABACKUP to define 201.2.10.12 as backup for stack TCPCS.
Has an FTP server running that binds to INADDR_ANY.

In the preceding scenario, when stack TCPCS goes down, new connections for the

Web server at 201.2.10.11 will connect with stack TCPCS2, and new connections
for the FTP server at 201.2.10.12 will connect with stack TCPCS3.

Chapter 5. Virtual IP Addressing 217

Different application uses of IP addresses and DVIPAs

Not all IP-based server applications relate to IP addresses in the same way.
Automated movement of DVIPAs, and the planning for dynamic VIPA Takeover,
must take this difference into account.

Some applications will accept client requests on any IP address by binding to
INADDR_ANY (for example, TN3270 or Web servers). The distinguishing feature of
such an application is the function it provides (the particular set of SNA applications
for TN3270 or the particular web pages for a Web server). If the function is
replicated across multiple z/OS images in the sysplex, as is often the case for
distributed workload, the DVIPA must merely be moved to a stack supporting the
application. This scenario is called the Multiple Application-Instance Scenario. For
the Multiple Application-Instance Scenario, the stacks in the sysplex do all the work
of activating a DVIPA in the event of a failure.

For other types of applications, each application instance must have a unique IP
address for one of the following reasons:

* The application instance cannot bind to INADDR_ANY.

« Clients might establish a relationship to that server application instance that can
span multiple TCP connections, and the client must get connected back to the
same server application instance while the relationship lasts.

This scenario is called the Unique Application-Instance Scenario and uses DVIPAs
that are activated with an ioctl or a bind().

To maintain the relationship between an application instance and its DVIPA, the
application must indicate to the stack that the DVIPA needs to be activated. This
occurs in the following cases:

» When the application instance issues a bind() function call and specifies an IP
address that is not active on the stack. The stack will activate the address as a
DVIPA, provided it meets certain criteria. When the application instance closes
the socket, the DVIPA is deleted.

* Some applications cannot be configured to issue bind() for a specific IP address,
but are Unique Application-Instance Scenario applications. For such applications,
a utility is provided (MODDVIPA), which issues SIOCSVIPA ioctl() to activate or
deactivate the DVIPA. This utility can be included in a JCL procedure or OMVS
script to activate the DVIPA before initiating the application. As long as the same
JCL package or script is used to restart the application instance on another node
in the event of a failure, the same DVIPA will be activated on the new stack. For
information about the authorization required to execute the MODDVIPA utility, see
[‘Using the MODDVIPA utility” on page 222}

Configuring Dynamic VIPAs

218

To allow continued and unchanged operation of static VIPAs in z/OS TCP/IP,
DVIPAs are defined with configuration statements in the PROFILE.TCPIP data set.
An overview of the relevant configuration statements is provided in the following
sections, and also see |“Verifying the DVIPAs in a sysplex” on page 241| for a
description of the configuration statements. For an example of the
VIPADYNAMIC/ENDVIPADYNAMIC configuration statements and display
commands for Dynamic VIPA, see|z/0S Communications Server: IP Configuration|

z/OS V1R4.0 CS: IP Configuration Guide

Configuring the Multiple Application-Instance Scenario

For the Multiple Application-Instance Scenario, each instance is assigned a unique
DVIPA. The VIPADEFINE keyword of the VIPADYNAMIC configuration statement is
used to create the DVIPA on the stack where the DVIPA is normally expected to be
active. When the VIPADEFINE statement is processed in a TCP/IP profile,
corresponding DEVICE, LINK, HOME, and BSDROUTINGPARMS statements are
generated automatically. Routing daemons are automatically informed.

Additional configuration is required on other stacks in the sysplex to indicate which
stack should take over the DVIPA in the event of a failure. The VIPADYNAMIC
statement has a VIPABACKUP keyword for this purpose. A VIPABACKUP
configures the DVIPA but does not activate it until it is necessary. Because more
than one TCP/IP can backup a single DVIPA, a rank parameter on the
VIPABACKUP statement determines the order in which several stacks will assume
responsibility for a DVIPA.

The stacks in the sysplex exchange information on all VIPADEFINEs and
VIPABACKUPs defined in the sysplex, so that all are aware of which stack should
take over a particular DVIPA. The list of backup stacks for a specific DVIPA can be
different from the list of backup stacks for all other DVIPAs.

In the Multiple Application-Instance Scenario, instances of the application in
question are activated among sysplex nodes according to some plan, presumably
related to balancing workload across available capacity. This activation is done
independently of VIPA Takeover. Configure the associated DVIPAs as follows:

1. For each instance of a particular application to be supported via DVIPA, add a
VIPADEFINE statement to the TCP/IP profile for the TCP/IP associated with the
application instance.

2. For each of the Dynamic VIPAs in Step 1, determine which application instance
or instances should take over the workload (considering probable capacity and
any other application-related considerations). If more than one TCP/IP is to
provide backup for a DVIPA, determine the order in which the selected TCP/IPs
should be designated as backup. Add a VIPABACKUP statement to each
TCP/IP that is to provide backup for the DVIPA, with appropriate rank values to
determine the order. Do this for each of the DVIPAs in Step 1.

3. Perform steps 1 and 2 for each other application to be supported by DVIPAs.

Note: It is possible to share a Dynamic VIPA among several different
applications, but in doing so, ensure that instances of all such
applications will exist together on any TCP/IP to which the DVIPA may be
moved in case of a failure.

After these steps are complete, start the affected TCP/IPs (or modify their
configuration using VARY TCPIP,,OBEYFILE), if applicable, configure DNS for the
application names, and start the application instances. From that point on, the
TCP/IPs in the sysplex will collaborate to ensure that each Dynamic VIPA is kept
active somewhere within the sysplex as long as there is at least one functioning
TCP/IP which has been designated as backup for the Dynamic VIPA.

Configuring the Unique Application-Instance Scenario

The Unique Application-Instance Scenario ties a DVIPA to a specific instance of an
application. To isolate errors in configuring applications, TCP/IP needs a mechanism
to identify permissible DVIPAs. This is provided with one or more VIPARANGE
statements. The VIPARANGE statement identifies a range of IP addresses which

Chapter 5. Virtual IP Addressing 219

220

can be activated as DVIPAs by an application instance. The VIPARANGE statement
consists of a subnet mask and an IP address and thus defines a subnet for
DVIPAs. More than one VIPARANGE statement with different ranges can be
defined on a TCP/IP. VIPARANGE does not itself cause any DVIPAs to be
activated. Rather, DVIPAs are activated either by an application issuing a bind() for
a specific IP address, by use of the SIOCSVIPA ioctl() command issued by an
authorized application, or by the MODDVIPA utility.

When an application issues bind() for a specific IP address or an address was
selected using the BIND keyword on the PORT statement, the receiving stack
checks it against addresses in the HOME list. If the IP address has already been
activated on this stack (whether for a physical device, a static VIPA, or a Dynamic
VIPA), the bind() execution is successful. If the IP address is not active on this
TCP/IP, the current VIPARANGES are checked to see if the IP address falls within
one of them. If an appropriate VIPARANGE is found, it is activated as a DVIPA and
the operation succeeds. If no appropriate VIPARANGE is found, or if the IP address
is active elsewhere in the sysplex other than by a NONDISRUPTIVE bind(), the
request fails and bind() returns EADDRNOTAVAIL.

When an authorized application issues the SIOCSVIPA ioctl() command to create a
DVIPA, or when the MODDVIPA utility is executed in JCL or an OMVS script to
activate a DVIPA on behalf of an application instance, the current VIPARANGES are
checked to see whether the IP address falls within one of them. If an appropriate
VIPARANGE is found, and the IP address is not currently active on this TCP/IP or
elsewhere in the sysplex as an IP address or a VIPADEFINE/VIPABACKUP
Dynamic VIPA, then the IP address is activated as a DVIPA. However if no
appropriate VIPARANGE is found on this TCP/IP, or if the IP address is currently
defined on this TCP/IP or configured elsewhere in the sysplex as an IP address or
a VIPADEFINE/VIPABACKUP Dynamic VIPA, then the request fails with errno and
errnojr set to indicate the reason for the failure and the utility ends with a nonzero
condition code. See [‘Dynamic VIPA creation results” on page 236| for more
information.

Note: If the requested IP address has been activated as a Dynamic VIPA by a
bind() or SIOCSVIPA ioctl elsewhere in the sysplex, the result depends on
how the stacks were configured. See [‘Dynamic VIPA creation results” on|

for more information.

In the Unique Application-Instance Scenario, each application instance is assigned
a unique IP address as its DVIPA. Before defining individual DVIPAs, one or more
blocks of IP addresses must be defined for these DVIPAs, and the individual
DVIPAs must be defined from within the blocks. Each block should be represented
as a subnet, so that a VIPARANGE statement can be defined for it.

Follow these steps when setting up any unique application instances:

1. For each application instance, assign a DVIPA from one of the blocks of IP
addresses for this purpose. Do not assign an IP address which is also assigned
to another application instance, or which is defined by VIPADEFINE for the
Multiple Application-Instance Scenario. Configure the application to use this
DVIPA (if it issues bind() for a particular IP address), or add the MODDVIPA
utility to the JCL or OMVS script and configure the MODDVIPA utility to activate
the DVIPA before starting the application, and to delete the DVIPA when the
application ends.

2. For each application instance, determine on which stack the application instance
will normally be executed and to which stacks the application instance could be

z/OS V1R4.0 CS: IP Configuration Guide

moved in case of failure of the normal stack or the application itself. For each
such stack, add a valid VIPARANGE statement to the profile.

Note: The dynamic VIPA must be within the VIPARANGE subnet. The
broadcast address and the net prefix cannot be used.

3. Perform steps 1 and 2 until all application instances have been allocated a
unique DVIPA.

The application restart strategy should ensure that the worst-case failure scenario
does not attempt to activate more than 256 DVIPAs on a single stack. If such an
attempt is made, activation of the 257th DVIPA will fail, with possible resulting loss
of connectivity from clients to the server application.

Note: The limit of 256 DVIPAs on a single TCP/IP applies to all DVIPAs, whether
defined by VIPADEFINE/ VIPABACKUP configuration statements, through a
VIPADISTRIBUTE statement on another stack, by a bind() call, or by
executing the MODDVIPA utility.

Defining a single block makes the definition process easier, but also provides less
individual control. Alternatively, since the smallest subnet consists of four IP
addresses, defining a unique subnet for each DVIPA in this scenario wastes three
other IP addresses that could have been used for DVIPAs.

Using the 'SIOCSVIPA’ ioctl command

An ioctl command 'SIOCSVIPA’ allows an application to create or delete a Dynamic
VIPA on the stack where the application is running. The application issuing the
"'SIOCSVIPA’ ioctl command must be APF authorized and be running under a user
ID with SuperUser authority. If the new profile for the MODDVIPA program has been
defined under RACF, any user ID can be allowed to issue the SIOCSVIPA ioctl

simply by being permitted to use this profile. For more information, see
[RACF profile for MODDVIPA” on page 223

To create a new Dynamic VIPA, the requested IP address must be within a subnet
that has been previously specified by a VIPARANGE configuration statement in the
PROFILE.TCPIP data set for this stack. The 'SIOCSVIPA’ ioctl command can be
used to delete any existing Dynamic VIPA on the stack, except for distributed
DVIPAs.

The following example shows how to set up the 'SIOCSVIPA’ ioctl command.

#include "ezbzdvpc.h" /* header that contains
the structure for
'SIOCSVIPA' doctl
and needed constants*/

struct dvreq dv; /* the structure passed

on the ioctl commandx/
dv.dvr_version = DVR_VERI; /*version */
dv.dvr_length = sizeof(struct dvreq); /* structure length */
dv.dvr_option = DVR_DEFINE; /* to define a new

Dynamic VIPA. Use
DVR_DELETE to delete
a dynamic VIPA */
dv.dvr_addr.s_addr = inet_addr(my_ipaddr); /* where my_ipaddr is
a character string
in standard
dotted-decimal
notation */
rc = ioctl(s, SIOCSVIPA, &dv);

Chapter 5. Virtual IP Addressing 221

222

The 'SIOCSVIPA’ ioctl command sets nonzero errno and errnojr values to indicate
error conditions. Refer to|zZ0S Communications Server: IP and SNA Codes|for a
description of the errnojr values returned.

Using the MODDVIPA utility
You can use the MODDVIPA utility to activate or delete a Dynamic VIPA. The utility

can be initiated from JCL or an OMVS script. MODDVIPA must be loaded from an
APF authorized library and be executed under a user ID with SuperUser authority.
The user ID must also have an OMVS segment defined (or defaulted). If the new
profile for the MODDVIPA program has been defined under RACF, any user ID can
execute the MODDVIPA program simply by being permitted to use this profile. For
more information, see [‘Defining a RACF profile for MODDVIPA” on page 223

Note: In V2RS, this utility was called EZBXFDVP. The EZBXFDVP name will
continue to work as it did in V2R8, but MODDVIPA is the preferred name
and will be used throughout this document.

Input parameters: The input parameters for the utility are:

-p <tcpipname>
Specifies the TCP/IP which is to create or delete a DVIPA.

-c <IPaddress> or -d <IPaddress>

Specifies to create (-¢) or delete (-d) the address (IP address) specified.
Notes:
1. The input parameters -p, -c, and -d must be entered in lowercase.
2. <tepipname> must be entered in upper case.
3. <IPaddress> is dotted-decimal notation.
4

To create a DVIPA, the specified IP address must be within a subnet that has
been previously specified by a VIPARANGE configuration statement in the
PROFILE.TCPIP data set for the specified TCP/IP.

Output: The MODDVIPA utility sets the following exit (completion) codes for
create (-c):

0 Success: The DVIPA was activated.

4 Warning: The requested DVIPA was not activated because the specified IP
address is already active on this stack.

8 Error: The IP address was not defined as a DVIPA on this TCP/IP.

12 An error was found in the input parameters

The MODDVIPA utility sets the following exit (completion) codes for delete (-d):

0 Success: The Dynamic VIPA was deleted.

8 Error: The requested DVIPA was not deleted.
12 An error was found in the input parameters
Notes:

1. When an error is detected, the ernno text and errnojr value are printed to stderr.

2. If the IP address requested for the DVIPA is not within a VIPARANGE
configured on this stack, completion code 8 is returned even if the IP address is
currently active on this stack

Examples

z/OS V1R4.0 CS: IP Configuration Guide

uicd,

Within JCL:

//TCPDVP EXEC PGM=MODDVIPA,REGION=0K,TIME=1440, X
// PARM="'POSIX(ON) ALL31(ON)/-p TCPCS3 -c 1.2.3.4'

From OMVS shell:
moddvipa -p TCPCS3 -c 1.2.3.4

Defining a RACF profile for MODDVIPA
You can restrict access to the MODDVIPA (EZBXFDVP) program by defining a

RACF profile under the SERVAUTH class and specifying the user IDs that are
authorized to execute the SIOCSVIPA ioctl or the MODDVIPA utility program. You
can decide on the level of control that is appropriate for your installation.

To restrict access to the SIOCSVIPA ioctl (and thus the MODDVIPA utility), you can
define a RACF profile using the following example:

RDEFINE SERVAUTH (EZB.MODDVIPA.system_name.tcpip_name)
UACC (NONE)

PERMIT EZB.MODDVIPA.system _name.tcpip_name
ACCESS (READ) CLASS(SERVAUTH) ID(USERI)

where system_name is the name of the MVS system where the ID will execute the

MODDVIPA utility or issue the SIOCSVIPA ioctl, and tcpip_name is the jobname of

the TCP/IP started task. The jobname for started tasks, such as TCP/IP, is derived

depending on how it is started:

» |f the START command is issued with the name of a member in a cataloged
procedure library (for example, S TCPIPX), the jobname will be the member
name (for example, TCPIPX).

* If the member name on the START command is qualified by a started task
identifier (for example, S TCPIPX.ABC), the jobname will be the started task
identifier (for example, ABC). The started task identifier is not visible to all MVS
components, but TCP/IP uses it to build the RACF resource name.

* The JOBNAME parameter can also be used on the START command to identify
the jobname (for example, S TCPIPX,JOBNAME=XYZ).

* The JOBNAME can also be included on the JOB card.

In this example, user ID USER1 is being permitted to invoke the MODDVIPA utility
(and thus the SIOCSVIPA ioctl).

If this RACF profile is created, the user ID must be permitted to access this profile
or else the SIOCSVIPA ioctl (and thus the MODDVIPA utility) will fail with a
‘permission denied’ error, regardless of SuperUser authority.

Also note that before the RACF profiles take effect, a refresh of these profiles might
be required. This can be accomplished by the following RACF command:

SETROPTS RACLIST(SERVAUTH) REFRESH

For more information, refer to [z/0S Security Server RACF Security Administrator’s|

Choosing which form of Dynamic VIPA support to use

The following sections explain which of the new features should be used for the
type of application being used.

Chapter 5. Virtual IP Addressing 223

When should VIPADEFINE and VIPABACKUP be used to define a Dynamic
VIPA?

* One or more applications bind to INADDR_ANY and exist on multiple TCP/IPs.
* Dynamic VIPA Takeover is desired.
» The DVIPA does not need to be deleted when the application is stopped.

When should VIPARANGE and bind() be used to define a Dynamic VIPA?

* The application cannot bind to INADDR_ANY or Dynamic VIPA Takeover is not
desired.

* The IP address to which the application binds can be controlled by the user. The
application’s first explicit bind (the listening socket) will remain for the life of the
application. Otherwise, the DVIPA will be removed everytime the application’s
DVIPA owning socket is closed, and re-added everytime there is a new DVIPA
owning socket (another explicit bind has been done and the DVIPA does not
exist).

» Automatic deletion of the Dynamic VIPA when the application is stopped is
acceptable.

» A specific Dynamic VIPA address must be associated with a specific application.

» The application is not APF authorized, or not run under a user ID with SuperUser
authority.

When should VIPARANGE and the MODDVIPA utility (or ioctl command
’SIOCSVIPA’) be used to define a Dynamic VIPA?

* The application cannot bind to INADDR_ANY or Dynamic VIPA Takeover is not
desired.

* The IP address to which the application binds is known but cannot be controlled
by the user.

» Automatic deletion of the Dynamic VIPA when the application is stopped is not
acceptable.

* The MODDVIPA utility (or application issuing the ioctl command) will be run from
an APF authorized library and under a user ID with SuperUser authority.

Configuring Distributed DVIPAs — Sysplex Distributor

224

A Distributed DVIPA exists on several stacks, but is advertised outside the sysplex
by only one stack. This stack receives all incoming connection requests and routes
them to all the stacks in the distribution list for processing. This provides the benefit
of distributing the workload of incoming requests and providing additional fail-safe
precautions in the event of a server failure.

You can distribute connections destined for a Dynamic VIPA (DVIPA) by adding a
VIPADISTribute configuration statement for a previously defined Dynamic VIPA. The
order of the statements is important. The VIPA is first VIPADEFined and then
VIPADISTributed. Another TCP/IP can act as a backup for the Distributed DVIPA by
properly coding a VIPABackup statement; the backup will perform the routing
function in the event of a failure. The options specified on a VIPADISTribute
statement are inherited by a backup stack unless the second stack has its own
VIPADISTribute statement, in which case it will use that VIPADISTribute statement
for distributing. You can also code a VIPADISTribute statement with just the
VIPABackup statement and not for the VIPADEFine statement. This would allow
workload distribution only during a primary outage.

z/OS V1R4.0 CS: IP Configuration Guide

You can change the distribution of a DVIPA after a backup stack has activated it.
However, if the backup stack did not not have its own distribution defined by a
VIPADISTRIBUTE statement before it activated the DVIPA, any distribution changes
made while the DVIPA is active on the backup stack are temporary. Those changes
will be in effect while the DVIPA remains active on the backup stack, but will not be
remembered if this stack takes over the DVIPA again in the future.

Following is an example of a properly coded Distributed VIPA:

IPCONFIG SYSPLEXROUTING DATAGRAMFWD DYNAMICXCF 193.9.200.4 255.255.255.240 1
VIPADYNAMIC
VIPADEFINE 255.255.255.192 9.67.240.02
VIPADISTRIBUTE DEFINE 9.67.240.02 PORT 20 21 8000 9000 DESTIP
193.9.200.2
193.9.200.4
193.9.200.6
ENDVIPADYNAMIC

To enable the TCP/IP to forward connections, Datagram Forwarding must be
enabled (specify DATAGRAMFWD in the IPCONFIG statement). There are several
configuration changes that can be made to affect the method the distributing stack
will use to forward connections to the target stacks. In each of the following items,
all participating stacks is used to refer to the distributing stack and all target stacks.

WLM-based forwarding
To enable the distributing stack to forward connections based upon the
workload of each of the target stacks, configure all participating stacks for
WLM GOAL mode and specify SYSPLEXROUTING in the IPCONFIG
statement in all participating stacks. This will register all participating stacks
with WLM and will allow the distributing stack to request workload
information from WLM.

WLM/QoS-based forwarding
To enable the distributing stack to forward connections based upon a
combination of workload information and network performance information
(TCP retransmissions and timeouts), configure all participating stacks for
WLM GOAL mode, specify SYSPLEXROUTING in the IPCONFIG statement
in all participating stacks and also define a Sysplex Distributor Performance
Policy on the target stacks. For information on configuring these policies,
see [‘Sysplex Distributor policy example” on page 573

Random forwarding
In the absence of any of the above configuration changes, the distributing
stack will randomly select one of the target stacks for each connection.

Whether the distributing stack is performing WLM-based forwarding,
WLM/QoS-based forwarding, or random forwarding, Sysplex Distributor Routing
Policies can further affect the distribution of connections. Sysplex Distributor
Routing Policies, configured on the distributing stack, are used to specify a set of
target stacks for a given set of traffic. For example, all traffic destined to a given
port/DVIPA from a specified subnet can be assigned one group of target stacks,
while traffic for the same port/DVIPA from another subnet can be assigned to a
different group of target stacks. For more information on configuring these types of
policies, see |“Sysplex Distributor policy example” on page 573|.

When some targets are running WLM COMPAT mode and some are running WLM
GOAL mode, the target stacks running WLM COMPAT mode will not be selected to
service any requests. Only WLM GOAL mode targets will be selected when both
COMPAT and GOAL modes exist.

Chapter 5. Virtual IP Addressing 225

Each distributing stack and each target stack must have a DYNAMICXCF address.
When using Sysplex Distributor, do not define an IUTSAMEH link. These links will

be created automatically from the DYNAMICXCF statement. This address is used

by other distributing stacks as a destination point. Refer to|z/0S Communications

[Server: IP Configuration Reference for directions for coding DYNAMICXCF on the

IPCONFIG statement. For more information on additional configuration parameters
required, also see the usage notes related to the DYNAMICXCF parameter under

the IPCONFIG statement in [zZ0S Communications Server: IP Configuration|

The VIPADISTribute statement specifies how new connection requests are routed to
a set of candidate target stacks. The VIPADISTRIBUTEd DVIPA is followed by up to
four ports, in this case the well-known ports for FTP and the ports for a custom
application. Up to 32 target TCP/IPs follow the DESTIP keyword and are identified
by their respective Dynamic XCF IP addresses. The VIPADISTribute statement may
also specify DESTIP ALL, in which case all current and future stacks with activated
Dynamic XCF may participate in the distribution as candidate target stacks. As an
application listens to one of the specified ports on each listed TCP/IP, the routing
TCP/IP begins to forward connections to that stack.

Sysplex wide source VIPA

226

Sysplex Distributor addresses the requirement of providing to clients outside a
parallel sysplex a single-IP-address appearance to application instances spread
across the sysplex, and also the distribution of the incoming work among the
various instances. Many applications are part of a cooperative network of
applications, and the sysplex applications that serve as clients to end users might
also have to initiate (client-like) outbound connection requests to cooperating
applications. The SOURCEVIPA feature allows applications to attain independence
of any physical adapter, but SOURCEVIPA is limited to statically defined VIPAs
within a stack. Different instances of the same application using Sysplex Distributor,
and thus having a single IP address for inbound connection requests, will use
different IP addresses for their outbound connection requests.

These problems are resolved by allowing a single sysplex wide Dynamic VIPA
(DVIPA) to be used as the source IP address for TCP applications and to have the
sysplex stacks collaborate on assigning ephemeral ports to prevent duplicate
connection 4-tuples (combination of source and destination IP addresses and
ports). These solutions are provided by sysplex wide dynamic source VIPAs for
TCP connections and SYSPLEXPORTS.

Sysplex wide dynamic source VIPAs for TCP connections

The TCPSTACKSOURCEVIPA keyword on the IPCONFIG statement allows users
to specify a single DVIPA to be used as a source IP address for TCP applications
that initiate outbound connections on that stack. TCPSTACKSOURCEVIPA is only in
effect when SOURCEVIPA is enabled and an application issues a connect() without
a bind(). TCPSTACKSOURCEVIPA overrides other forms of source IP selection for
all TCP applications that issue the connect() without a bind().

If you specify TCPSTACKSOURCEVIPA and do not specify SOURCEVIPA in a
profile, a warning message is issued and TCPSTACKSOURCEVIPA will not be
enabled. Also note that, while specifying a DVIPA as the TCPSTACKSOURCEVIPA
address is most useful, any IP address in the home list can be used. Furthermore,
the address specified does not need to be active on the stack at profile processing
time. For example, a valid TCPSTACKSOURCEVIPA address can be an address

z/OS V1R4.0 CS: IP Configuration Guide

that falls within a VIPARANGE statement [and can be created with the MODDVIPA
utility or an application bind() request], or an address that will be a target address
on this stack for sysplex distribution.

Rules governing conflicts and takeover for this DVIPA activation are the same as
the current rules for DVIPAs created by an application issuing bind(). This includes
the function that the DVIPA will be deleted when the application closes the socket.
For best performance, or to avoid the DVIPA being deleted when the first
application to use it closes its socket, the system programmer might want to use the
MODDVIPA utility to activate the DVIPA.

If the IP address is not an active DVIPA on the stack and cannot be made active as
an application-initiated DVIPA (VIPARANGE), then the connect() call will go through
normal source IP selection. A warning message will be issued no more than once
every five minutes (to avoid flooding the system console), indicating an attempt to
use the address specified in TCPSTACKSOURCEVIPA failed.

TCPSTACKSOURCEVIPA can be coded on all target stacks. The target
TCPSTACKSOURCEVIPA statements can specify individual unique addresses, or
can be duplicates of those specified on the distributing stack (a target DVIPA).
Specifying the same DVIPA address for TCPSTACKSOURCEVIPA on the distributor
and all target stacks creates a sysplex wide dynamic source VIPA and raises the
concern for coordination of ephemeral ports across the sysplex.

For information on diagnosing sysplex wide dynamic source VIPAs for TCP
connections problems, see [zZ0S Communications Server: IP Diagnosis,

SYSPLEXPORTS

Whenever two or more application instances use the same source IP address and
initate connections to the same destination IP address and port, sysplex wide
coordination of assignment of ephemeral ports is required so that the 4-tuple for
each connection remains unique. As long as the source IP address is on a single
stack, this coordination is not a problem because the stack manages assignment of
ephemeral ports. However, with Sysplex Distributor applications, multiple application
instances might desire to initiate connections using the same distributed DVIPA,
potentially to the same destination IP address and port, so uniqueness of the
connection 4-tuples cannot be guaranteed unless the stacks collaborate across the
sysplex for ephemeral port assignment for distributed DVIPAs. This can be done by
adding the optional SYSPLEXPORTS parameter to the VIPADISTRIBUTE
statement.

SYSPLEXPORTS must be specified on the first VIPADISTRIBUTE statement
processed for a particular DVIPA. It cannot be enabled once a DVIPA has been
configured for distribution. Once enabled, it cannot be disabled until all distribution
has been deleted for the DVIPA.

When a distributed DVIPA can be active on more than one target stack,
SYSPLEXPORTS can be specified to cause the stacks to collaborate in the
assignment of ephemeral ports for outbound initiated TCP connections. This
ensures that two different connections do not end up with the same connection
4-tuple.

At profile processing time, a stack whose profile contains a SYSPLEXPORTS
parameter on a VIPADISTRIBUTE statement will connect to the coupling facility
EZBEPORT structure containing sysplex port assignment information. (The structure
will be a list structure with an entry for each DVIPA address with a

Chapter 5. Virtual IP Addressing 227

VIPADISTRIBUTE with SYSPLEXPORTS specified anywhere in the sysplex. The
first stack to connect to the EZBEPORT structure for a particular DVIPA will create
an entry for that DVIPA in the coupling facility.) The stack will create and initialize, in
the EZBEPORT structure, a sublist for this DVIPA of assigned ports for this stack.

The stack also maintains a list of allowable ephemeral ports on this stack, which is
basically any port number above 1023 that has not been reserved for TCP by a
PORT or PORTRANGE statement. Only port number values in this list will be
allocated for use by this stack for its SYSPLEXPORTS DVIPAs. Since this list is
unique to a particular stack and determined by stack configuration, a port number
that is not permissible for one stack because it has been reserved might be
allowable for another stack, and could in fact be allocated for use by that stack for a
SYSPLEXPORTS DVIPA.

When an application issues a TCP bind() with port O or a connect() request, and the
bind() or connect() request uses a distributed DVIPA as the source address
(whether by the application explicitly binding the socket to the designated DVIPA or
by the stack assigning the TCPSTACKSOURCEVIPA address) and the Distributed
DVIPA is designated as SYSPLEXPORTS, TCP/IP will receive an unassigned port
from the coupling facility structure that is allowable as an ephemeral port on the
stack (not otherwise reserved by PORT or PORTRANGE). The stack will assign
that ephemeral port as the source port for the TCP connection request, and the
coupling facility structure will be updated to show the port as assigned.

This means that the maximum number of simultaneously active outbound
connections using sysplex wide ephemeral port assignment is approximately 63000
for a particular distributed DVIPA, and is exactly equal to all port numbers between
1024 and 65535 that have not been reserved with a PORT or PORTRANGE
configuration statement on all stacks at the same time. This is the same as for
ephemeral port assignment within a single stack. That is, a single z/OS TCP stack
supports no more than about 63000 simultaneously active, locally initiated TCP
connections whose source ports are ephemeral ports assigned by the stack. If a
stack is unable to successfully obtain an ephemeral port from the coupling facility
for a SYSPLEXPORTS DVIPA, the connection request will be terminated with an
error indication.

When a connection ends, and the connection’s ephemeral port was a sysplex wide
ephemeral port, the stack will update the coupling facility structure entry for that
SYSPLEXPORTS DVIPA to indicate that the specific ephemeral port is once again
available for assignment.

For information on diagnosing SYSPLEXPORTS problems, see
[Communications Server: IP Diagnosis,

Sysplex Wide Security Associations

228

Sysplex Wide Security Associations (SWSA) is enabled by the addition of the
subparameter DVIPSEC to the FIREWALL parameter on the IPCONFIG statement.
To take advantage of the functions described here, you must add this subparameter
to your primary (including Sysplex Distributor hosts) and backup hosts. It is not
necessary to add DVIPSEC to hosts that serve only as targets for Sysplex
Distributor. For more information on configuring SWSA, see |zZ0S Communications]
[Server: IP Configuration Reference,

z/OS V1R4.0 CS: IP Configuration Guide

SWSA also requires the use of a coupling facility structure, EZBDVIPA. For
information on the setup and use of the EZBDVIPA coupling facility structure, see
[z/0S Communications Server: SNA Network Implementation Guide|

Dynamic IPSec security associations (SA), negotiated by IKE, can use a DVIPA
address as the SA endpoint. Manually configured SAs are not supported by SWSA.
For more information on IPSec, refer to|z/OS Security Server Firewall Technologies,

When using SWSA, there are two possible configurations to consider:

» DVIPA takeover

» Sysplex Distributor

To support IPSec in conjunction with DVIPA takeover and Sysplex Distributor, some

IKE and IPSec configuration is required. Loss of access to the coupling facility is
also discussed in the following subsections.

For information on diagnosing SWSA problems, see |z20S Communications Server]

DVIPA takeover

When a DVIPA is moved during DVIPA takeover (planned or unplanned), SWSA
automatically re-establishes new IPSec SAs with the same security service
characteristics as the SAs that existed on the host that previously owned the
DVIPA. The SA re-establishment is transparent to the client that owns the other end
of the SA. That is, the SA re-establishment looks like a normal SA refresh. For
example, as shown in|Figure 36 on page 230|, during DVIPA takeover, DVIPA
192.168.253.4 is taken over by the backup host, and SAs are transparently
re-established between the client and the backup host.

Chapter 5. Virtual IP Addressing 229

230

Original Owning Host Backup Host

MVS A MVS B
TCP A TCPB
DVIPA
takeover
DVIPA et »| DVIPA
192.168.253.4 192.168.253.4

EZBDVIPA !
! Security

! Associations
. Re-established

.

Security
Associations

MVS Coupling Facility .

.

192.168.253.4

Client

Figure 36. DVIPA takeover with SWSA

The IKE running on behalf of the TCP stack of the DVIPA owner is responsible for
all IKE SA negotiations. The TCP stack owning the DVIPA is responsible for
keeping the coupling facility updated with information needed to re-establish the
SAs in the event of a DVIPA takeover. When a takeover occurs, the IKE on the
backup host assumes responsibility for renegotiating new SAs based on the stored
information read from the coupling facility during the takeover by the TCP stack of
the new DVIPA owner.

Sysplex Distributor

TCP traffic protected by an IPSec SA with a sysplex-distributed DVIPA endpoint can
be distributed to target hosts. IPSec cryptography for inbound traffic is performed on
the target host whenever possible. If not possible, the distributor performs the
cryptography before forwarding the packet to the target stack. IPSec cryptography
for outbound traffic is performed on the target host, and then sent directly into the
network without being routed through the distributor. |Figure 37 on page 231| shows
the target stack performing the cryptography for the inbound and outbound traffic.

z/OS V1R4.0 CS: IP Configuration Guide

Distributing Host Target Host

MVS A MVS B
TCP A TCPB
IPSec Protected
TCP Packet
DVIPA e »| DVIPA
192.168.253.4 192.168.253.4

EZBDVIPA !
: Shadow
! Security

.

. Associations

Security
Associations

MVS Coupling Facility .

192.168.253.4

Client

Figure 37. Sysplex Distributor with SWSA

The IKE running on behalf of the distributor TCP stack (the DVIPA owner) is
responsible for all IKE SA negotiations. The distributor stack keeps the master copy
of the SA associated with the DVIPA. Whenever a new SA is negotiated or
refreshed and the SA is installed in the distributor stack, a copy (shadow) of the SA,
which contains information necessary to perform IPSec cryptography, is sent within
the sysplex to the target hosts. The shadow SAs enable the distribution of
cryptography to the target stacks. The coupling facility is used as a central
repository for SA replay protection sequence numbers used for outbound
operations. The SA lifesizes (bytes sent and received over an SA) are maintained in
the master SA.

Using IPSec with DVIPAs and Sysplex Distributor

To support IPSec in conjunction with DVIPA takeover and Sysplex Distributor, some
IKE and IPSec configuration on the original or distributing host must be replicated
onto all systems that can either serve as a backup host for a VIPA takeover or a
target host for Sysplex Distributor. This includes IP Security policy that affects traffic
using DRVIPA (from an IKE definition perspective).

* From a stack perspective, all anchor rules that are applicable to DRVIPA traffic
must be identical on all systems. In addition, the ordering of the rules must allow
for consistent application of security policy on all systems.

» To be considered a sysplex wide SA, the SA negotiated that applies to DVIPAs
must be at a granularity no coarser than host for the local address. That is, a

Chapter 5. Virtual IP Addressing 231

dynamic SA cannot use a subnet or range that encompasses a DVIPA address.
This rule ensures that on a DVIPA Giveback the SA can be moved from host to
host without concerns about an SA being applicable to both the backup and
primary host simultaneously. If such a dynamic SA is negotiated, the IPSec traffic
using it cannot be distributed or recovered through the DVIPA takeover support.

Loss of access to coupling facility

If access is lost to the coupling facility containing the DVIPA structure EZBDVIPA, it
is possible the TCP connections using this DVIPA could terminate and new
connections needing IPsec will fail to establish. Loss of access could be caused by
any of the following:

» A disconnect from the coupling facility structure.

* The structure is rebuilt.

» The structure encounters a critical storage shortage.

Loss of coupling facility access should only affect connections that are being
encrypted or authenticated and whose filter rule is defined at a host-based

granularity (no ports defined). Once access to EZBDVIPA is restored, the sessions
can be re-established.

Resolution of Dynamic VIPA conflicts

The same Dynamic VIPA can exist on more than one stack in the Sysplex, playing
different roles on the different stacks. The TCP/IP stacks collaborate to prevent
conflicting definitions. For example, at any given time only one stack will advertise a
given Dynamic VIPA to the routers.

Potentially conflicting Dynamic VIPA definitions can arise during profile processing
or as the result of changes within the sysplex due to a stack or application failure or
as the result of movement of workload to a different stack. The following scenarios
are examples of dynamic VIPA conflict resolution handled automatically by the
TCP/IP stacks. For a summary of dynamic VIPA conflict identification and resolution,
see [‘Dynamic VIPA creation results” on page 236}

Restart of the original VIPADEFINE TCP/IP after an outage

232

When a dynamic VIPA is defined using VIPADEFINE on one TCP/IP, and other
stacks are designated as backup using VIPABACKUP statements for the same
dynamic VIPA, the stack with the highest backup rank for that DVIPA will activate it
if or when the VIPADEFINE stack fails.

If the failed stack is later restarted with the same VIPADEFINE profile statement, it
is likely that connections to that DVIPA will exist on the backup stack that now has
the DVIPA activated and advertised to the routers. How and when ownership of the
DVIPA is returned to the restarted stack is determined by how the DVIPA was
originally configured.

VIPADEFINE MOVEABLE IMMEDIATE
If the DVIPA was originally configured with MOVEABLE IMMEDIATE, the following
occurs:

» The DVIPA ownership is immediately transferred to the restarting stack which
adds the DVIPA to its HOME list and the routers are dynamically notified. The
restarted stack receives all new connections for that DVIPA. The stack also can
receive packets for existing connections, and it routes these to the backup stack
to preserve those connections.

z/OS V1R4.0 CS: IP Configuration Guide

» At the same time, the backup stack notifies the routers that it no longer is the
owner of the DVIPA.

— If there are no current connections to the DVIPA, it is removed from the
HOME list on the backup stack and it reverts to backup status.

— If there are any existing connections, the DVIPA remains in the HOME list of
the backup stack and the DVIPA is put into Moving status until the last
existing connection is terminated. At that time, the DVIPA is removed from the
HOME list and reverts to backup status.

* IBM recommends this form of a planned DVIPA take back occur only during low
periods of connection activity. This gives the attached routers time to update their
routing tables and avoid connections being reset due to receiving an
ICMP_HOST_UNREACH from the router.

Notes:

1. To ensure preservation of existing connections on the prior owning stack, you
must define DYNAMICXCF and DATAGRAMFWD on the IPCONFIG statement.

2. MOVEABLE IMMEDIATE is the default for V2R10 and later.

3. The behavior described for MOVEABLE IMMEDIATE applies only when both the
backup and the restarted stack are running V2R10 or later. If either the

restarted stack or the backup stack is running V2R8, the behavior is the same
as described in ['VIPADEFINE MOVEABLE WHENIDLE}

VIPADEFINE MOVEABLE WHENIDLE
If the DVIPA was originally configured with MOVEABLE WHENIDLE (or the

restarted or backup stack is running V2R8), the following occurs:

» If it appears that there are no active connections to the DVIPA on the backup
stack:

— The DVIPA is removed from the HOME list on the backup stack and reverts to
backup status.

— The restarted stack assumes ownership of the DVIPA by adding it to its
HOME list and notifying the routers.
 If there are existing connections to the DVIPA on the backup stack:
— Ownership of the DVIPA remains with the backup stack. The DVIPA on the

restarting stack is placed in backup status at the head of the backup list for
the DVIPA.

— The backup stack periodically checks to see if it has any active connections to
the DVIPA.

When or if it appears that there are no active connections for the DVIPA, the

following occurs:

- The DVIPA is removed from the HOME list on the backup stack and reverts
to backup status.

- The restarted stack assumes ownership of the DVIPA by adding it to its
HOME list and notifying the routers.

Notes:

1. A small period of time exists between the check for connections and the
movement of the dynamic VIPA to the restarted stack. If connections are
made to the old host (the backup stack) in this interval, they will be
broken.

2. During the time that TCP/IP is periodically checking for connections,
TCP/IP does not refuse new connections because this would be the same
as an outage. If moving the work back to the restarted stack is more
important than maintaining uninterrupted service to all clients, then the

Chapter 5. Virtual IP Addressing 233

system operator can use VARY TCPIP,,OBEYFILE to delete the dynamic
VIPA on the backup stack with the VIPADELETE profile statement. This
causes the restarted stack to immediately activate the DVIPA. (Optionally,
the OBEYFILE data set can contain a VIPABACKUP statement following
the VIPADELETE statement. This will restore the stack as a backup
stack.)

Movement of unique application-instance (BIND)

234

A dynamic VIPA is created when any application binds to a nonexistent, specific IP
address falling within a configured VIPARANGE on that stack.

In the case of a stack failure, the same application could be started on another
stack and (assuming the new stack also has an appropriate VIPARANGE
configured) when the application binds to the same IP address, the dynamic VIPA is
created on the second stack. Future client connections to that IP address are
routed to the second stack where the application is now running.

However, if the same (or a different) application is started on a second stack and
attempts to create the same dynamic VIPA using a bind() while it exists on the first
stack, the end result is determined by how the VIPARANGE was configured on the
stack where the first bind() occurred.

VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE

If the first stack is configured with VIPARANGE MOVEABLE NONDISRUPTIVE, the

following occurs:

» The DVIPA ownership is immediately transferred to the second stack which adds
the DVIPA to its HOME list and dynamically notifies the routers. This stack will
now receive all new connections for the DVIPA.

» At the same time, the first stack notifies the routers that it no longer is the owner
of the DVIPA, and puts the DVIPA into moving status. The DVIPA remains in
moving status (and in the first stacks HOME list) until the application closes the
socket.

» Existing connections on the first stack are preserved. If the second stack
receives packets intended for existing connections, it routes the packets to the
first stack.

Notes:

1. To ensure preservation of existing connections on the prior owning stack, you
must define DYNAMICXCF and DATAGRAMFWD on the IPCONFIG statement.

2. NONDISRUPTIVE is the default for V2R10 and later.

3. The applications that create dynamic VIPAs via BIND() do not have to be
authorized (so you might want to specify DISRUPTIVE).

4. Both stacks must be running V2R10 or later to get non-disruptive behavior. If
either stack is running V2R8, the result will be as described in|“VIPARANGE|
[(DEFINE) MOVEABLE DISRUPTIVE}

VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE DISRUPTIVE (or if
either stack is running V2R8), the following occurs:

» The bind() request for the application on the second stack will fail.
* The DVIPA on the first stack is not affected.

z/OS V1R4.0 CS: IP Configuration Guide

Note: If movement of the application from the first to the second stack is intended,
the application must be ended on the first stack before it is started on the
second stack.

Movement of a unique APF-authorized application instance (ioctl)

APF-authorized applications running under a user ID with SuperUser authority have
the ability to activate a Dynamic VIPA with the SIOCSVIPA ioctl() either within the
application itself or by invoking the MODDVIPA utility. Because this is a controlled
environment, it is assumed configuration errors are minimized or avoided and the
usage is correct. Thus, even if the requested DVIPA is currently active on another
TCP/IP stack via BIND() or ioctll(), the DVIPA will be immediately activated on this
stack. What happens on the other stack is determined by how the VIPARANGE was
configured on that stack.

VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE NONDISRUPTIVE, the

following occurs:

* The DVIPA ownership is immediately transferred to the second stack which adds
the DVIPA to its HOME list and dynamically notifies the routers.

» At the same time, the first stack notifies the routers that it no longer is the owner
of the DVIPA, and puts the DVIPA into moving status. The DVIPA remains in
moving status (and in the first stack’s HOME list) until the DVIPA is deleted on
that stack via the VIPADELETE profile statement or the SIOCSVIPA ioctl
DELETE option.

» Existing connections on the first stack are preserved. If the second stack
receives packets intended for existing connections, it will route the packets to the
first stack.

Notes:
1. NONDISRUPTIVE is the default for V2R10 and later.

2. Both stacks must be running V2R10 or later to get non-disruptive behavior. If

either stack is running V2R8, the result will be as described in|*VIPARANGE
[(DEFINE) MOVEABLE DISRUPTIVE]

VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE

If the first stack is configured with VIPARANGE MOVEABLE DISRUPTIVE (or if

either stack is running V2R8), the following occurs:

» The ioctl request for the application on the second stack succeeds. The DVIPA is
added to the HOME list on the second stack, and the routers are dynamically
notified.

¢« The DVIPA on the first stack is deleted.

Note: Any existing connections to the DVIPA on the first stack are broken.

Same Dynamic VIPA as VIPADEFINE and BIND(), SIOCSVIPA ioctl, or
MODDVIPA utility

Regardless of careful implementation, it is possible that the same IP address is
inadvertently selected for VIPADEFINE and for use with BIND(), SIOCSVIPA ioctl,
or the MODDVIPA utility. Because the application scenarios are quite different, this
must be an error.

If this duplicate DVIPA address conflict occurs on the same TCP/IP, the second
attempt might fail. If an IP address is specified in a VIPADEFINE and that same IP
address has already been activated on the TCP/IP by an application via BIND(), the

Chapter 5. Virtual IP Addressing 235

SIOCSVIPA ioctl, or the MODDVIPA utility is used, the VIPADEFINE will be rejected
during VARY TCPIP,,OBEYFILE processing. If an IP address is activated via
VIPADEFINE, and the application does a BIND(), ioctl(), or the MODDVIPA utility is
used, the BIND() will succeed, but the ioctl() will fail with a nonzero errno and the
MODDVIPA utility will set a nonzero condition to indicate that the IP address already

exists.

The same situation could also occur on two different TCP/IPs in the sysplex.
Because the TCP/IPs are exchanging information among themselves, if the two
attempts are far enough apart in time, the second attempt will be caught
immediately and rejected. However, it is possible that the attempt will be made
almost simultaneously on two different TCP/IPs, such that neither TCP/IP is yet
aware of the attempt on the other TCP/IP. If both attempt such an activation, and
the exchange of information then shows a conflict, the internal sysplex time stamps
are used to determine which attempt was really first. The one that appears to be
first is allowed to continue, and the Dynamic VIPA is deleted from the later TCP/IP.
While such a simultaneous attempt is somewhat unpredictable in respect to which
one will succeed, the Dynamic VIPA will remain active on only one TCP/IP, and
examination of messages will indicate which TCP/IP successfully created the DVIPA
and on which TCP/IP it was rejected.

Dynamic VIPA creation results

summarizes the results of attempting to create a Dynamic VIPA when it (or
the same IP address for HOME statement) already exists in the sysplex.

236

Table 12. Summary of Dynamic VIPA creation results

First action Second action

Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

bind() bind()

Second bind() succeeds,
but no new VIPA is created.

If both stacks are running
V2R10 or later, and the
first BIND DVIPA was
created with MOVEABLE
NONDISRUPTIVE:

* On stack 2, bind()
succeeds

* On stack 1, the BIND
VIPA remains in the
HOME list
(unadvertised) and any
existing connections
are preserved

* New connections to
that IP address go to
the application on stack
2.

Otherwise, second bind
fails.

bind() ioctl()

ioctl() fails with warning
condition code, but the
application associated with
the ioctl is still able to use
the Dynamic VIPA.

ioctl() succeeds, bind is
deleted (even if BIND
DVIPA was created as
MOVEABLE
NONDISRUPTIVE)

bind() VIPADEFINE

VIPADEFINE fails.

VIPADEFINE fails.

bind() VIPABACKUP

VIPABACKUP fails.

VIPABACKUP fails.

z/OS V1R4.0 CS: IP Configuration Guide

Table 12. Summary of Dynamic VIPA creation results (continued)

First action Second action |Result if second action is | Result if the second

on the same stack action is on a different
stack within the sysplex
bind() HOME See note. See note.

ioctl() bind() bind() succeeds, no new bind() fails.

VIPA is created.

ioctl() ioctl() Second ioctl() fails with Second ioctl() succeeds.
warning condition code, but]
the application associated | If both stacks are running
with the ioctl is still able to | V2R10 or later, and the
use the Dynamic VIPA. ioctl DVIPA on stack 1

was created with
MOVEABLE
NONDISRUPTIVE, the
DVIPA on stack 1 remains
in the HOME list
(unadvertised) and any
existing connections are
preserved. Otherwise, the
ioctl DVIPA on stack 1 is
deleted and any existing
connections are broken.
ioctl() VIPADEFINE VIPADEFINE fails. VIPADEFINE fails.

ioctl() VIPABACKUP VIPABACKUP fails. VIPABACKUP fails.

ioctl() HOME See note. See note.

VIPADEFINE bind() bind() succeeds, but no bind() fails.
new VIPA is created.

VIPADEFINE ioctl() ioctl() fails. ioctl() fails.

VIPADEFINE VIPADEFINE VIPADEFINE fails if the Second VIPADEFINE
VIPADEFINE statement succeeds but activation
specifies a different mask | on stack 2 might be
or MOVEABLE setting than | deferred.
the first VIPADEFINE
Specified_ If the second If both stacks are running
VIPADEFINE statement is | V2R10 or later, and the
an exact duplicate of the DVIPA was created on
first, the second stack 1 as MOVEABLE
VIPADEFINE is ignored IMMEDIATE:
with no error message. » Second VIPADEFINE is

activated immediately
* Any connections to the
DVIPA on stack 1 are
preserved. (DVIPA
stays in HOME list
unadvertised)
Otherwise, the second
VIPADEFINE activation is
deferred until there are no
connections on stack 1, at
which point, stack 1
reverts to backup status.
VIPADEFINE VIPABACKUP VIPABACKUP fails. Both succeed.
VIPADEFINE HOME See note. See note.

Chapter 5. Virtual IP Addressing

237

238

Table 12. Summary of Dynamic VIPA creation results (continued)

First action

Second action

Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

VIPABACKUP

bind()

bind() fails.

If the IP address is
already active on the
bind() stack, the bind()
will succeed. Otherwise,
the bind() fails.

VIPABACKUP

ioctl()

ioctl() fails.

ioctl() fails.

VIPABACKUP
is backup
status

VIPADEFINE

VIPADEFINE succeeds,
replaces the VIPABACKUP.

VIPADEFINE succeeds.

VIPABACKUP
in active status
(after takeover)

VIPADEFINE

VIPADEFINE rejected

Note: The VIPABACKUP
DVIPA is MOVEABLE
IMMEDIATE or
WHENIDLE depending
how the original
VIPADEFINE DVIPA was
created.

If both stacks are running
V2R10 or later, and the
VIPABACKUP DVIPA is
MOVEABLE IMMEDIATE:

+ The VIPADEFINE is
activated immediately.

* Any connections to the
DVIPA on stack 1 are
preserved (DVIPA stays
in HOME list
unadvertised).

* When there are no
more connections,
stack 1 reverts to
backup status.

Otherwise, the
VIPADEFINE activation
on stack 2 is deferred
until there is no stack 1,
at which point, stack 1
reverts to backup status.

VIPABACKUP

VIPABACKUP

Second VIPABACKUP
succeeds.

Second VIPABACKUP
succeeds.

VIPABACKUP

HOME

See note.

See note.

HOME

bind()

bind() succeeds, but no
new VIPA is created.

bind() fails.

HOME

ioctl()

ioctl() fails.

ioctl() fails.

HOME

VIPADEFINE

VIPADEFINE fails.

VIPADEFINE fails.

HOME

VIPABACKUP

VIPABACKUP fails.

VIPABACKUP fails.

Note: Defining the same IP address in the HOME statement as an existing Dynamic VIPA
will not be rejected by the TCP/IP stack, but it is likely to cause routing problems.

z/OS V1R4.0 CS: IP Configuration Guide

Other considerations

The following sections describe other considerations you should understand
regarding Dynamic VIPA support.

Mixture of types of Dynamic VIPAs within subnets

Any particular IP address can be used in only one way as a Dynamic VIPA. As
described in previous sections, a Dynamic VIPA can be defined either via
VIPADEFINE or by application action within a valid VIPARANGE, but not both.
However, within a subnet defined as a VIPARANGE, some IP addresses can be
used for VIPADEFINE, and others may be assigned to unique application instances,
without conflict, as long as the limit of a total of 256 active and backup Dynamic
VIPAs on a single TCP/IP is not exceeded. TCP/IP will make no attempt to reject a
VIPADEFINE Dynamic VIPA that also falls within a VIPARANGE. This allows
installations with limited availability of IP addresses to assign individual addresses
to either application scenario, without having to define separate subnets and use up
additional IP addresses in that manner.

MVS failure and Sysplex Failure Management

The TCP/IPs in a Sysplex use MVS XCF Messaging to exchange information about
Dynamic VIPAs. When a TCP/IP fails or is ended by operator command, but the
underlying MVS remains active, the other TCP/IPs are immediately notified, and
takeover of VIPADEFINE Dynamic VIPAs is automated and very fast.

However, when an MVS fails, there is normally an operator message on the
console requiring a response (WTOR). Until this response is made by an operator
or automation, the other MVSs do not notify the remaining TCP/IPs in the sysplex
of the failure of the TCP/IP on the failing MVS. This can delay automated backup of
VIPADEFINED Dynamic VIPAs. Sysplex Failure Management (SFM) can be used to
automate the required response to the console message of the failing MVS. Refer
to|z/0S MVS Setting Up a Sysplex for information on how to set up SFM to avoid
the requirement for a manual response and speed backup of VIPADEFINED
Dynamic VIPAs.

For more information, refer to [zZ0S Communications Server: IP Diagnosis}

Applications and Dynamic VIPAs

While most applications support multiple instances in a sysplex, very few
applications expect IP addresses to move around under them. TCP applications use
TCP connections to form a relationship between particular client and server
instances to exchange data over an extended period. They rely on notification of
TCP connection termination to initiate recovery and to reestablish a new
relationship (possibly from a client to a different server). Conversely, most UDP
applications do the equivalent function at the application layer. Movement of an IP
address to a different server could be confusing to the client, unless the new server
also is aware of the state of the client work.

UDP applications whose interactions consist of atomic interactions (a single request
followed by one or more responses, with no state information maintained at the
server between requests) can use Dynamic VIPAs in the Multiple
Application-Instance Scenario. However, if the server application maintains state
information between interactions (for example, NFS), then moving a Dynamic VIPA
to another server might not work unless the client/server application protocol can

Chapter 5. Virtual IP Addressing 239

detect the discontinuity. In that case, the Unique Application-Instance Scenario
might apply, which would require the restart of the server instance on another
TCP/IP.

In addition, the following types of work are not appropriate for distribution with
distributed dynamic VIPA:

* Applications that establish affinity with a particular TCP/IP stack, such as SNMP.
* Applications that bind to ephemeral ports.

» FTP servers that receive the PASV command for a distributed DVIPA that did not
specify SYSPLEXPORTS. The PASV command is supported when
SYSPLEXPORTS was specified on the VIPADISTribute statement of the
distributed DVIPA that is the destination IP address being used by the FTP
server. This command requests the FTP server to bind() on a data port that is not
the default data port, or the one specified on the VIPADISTribute statement, and
to wait for a connection rather than initiate one on receipt of a transfer command
(for example, RETR).

Example of configuring Dynamic and Distributed VIPAs

240

The TCP/IP profiles needed to implement Dynamic VIPA(DVIPA) on multiple
systems in a sysplex are shown in the following examples. The VIPADEFINE and
VIPABACKUP statements allow Automatic Dynamic VIPA Takeover to occur if
needed (see [‘Configuring the Multiple Application-Instance Scenario” on page 219),
and the VIPARANGE statements allow Dynamic VIPAs to be dynamically created by
an application or by the MODDVIPA utility (see [‘Configuring the Unique]
IApplication-Instance Scenario” on page 219). The VIPADISTRIBUTE statements
allow a single VIPA to be shared among several TCP/IPs. Including the
SOURCEVIPA and TCPSTACKSOURCEVIPA parameters on the IPCONFIG
statement, on each target stack with the same Dynamic VIPA specified, enables a
single DVIPA address to be used as a sysplex-wide source DVIPA address for
outbound TCP connections.

TCPCS

IPCONFIG DATAGRAMFWD SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.1 255.255.255.240 14

VIPADYNAMIC
VIPADEFINE 255.255.255.240 201.2.10.11 201.2.10.12
VIPADISTRIBUTE 201.2.10.11 SYSPLEXPORTS PORT 20 21 DESTIP ALL
VIPADISTRIBUTE 201.2.10.12 PORT 20 21 DESTIP 193.9.200.2
VIPABACKUP 100 201.2.10.13
VIPABACKUP 80 201.2.10.21
VIPABACKUP 80 201.2.10.22
VIPARANGE DEFINE 255.255.255.192 201.2.10.192

ENDVIPADYNAMIC

TCPCS2
IPCONFIG DATAGRAMFWD SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.2 255.255.255.240 1
VIPADYNAMIC
VIPADEFINE 255.255.255.192 201.2.10.13
VIPABACKUP 100 201.2.10.11 201.2.10.21
VIPABACKUP 75 201.2.10.12 201.2.10.22
VIPARANGE DEFINE 255.255.255.192 201.2.10.192
ENDVIPADYNAMIC

TCPCS3
IPCONFIG DATAGRAMFWD SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.3 255.255.255.240 1
VIPADYNAMIC
VIPADEFINE 255.255.255.192 201.2.10.21 201.2.10.22
VIPABACKUP 10 201.2.10.11 201.2.10.12 201.2.10.13
VIPARANGE DEFINE 255.255.255.192 201.2.10.192
ENDVIPADYNAMIC

z/OS V1R4.0 CS: IP Configuration Guide

TCPCS6
IPCONFIG DATAGRAMFWD SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11

DYNAMICXCF 193.9.200.6 255.255.255.224 1

TCPCS6 does not have dynamic VIPAs defined so it does not
contain a VIPADYNAMIC definition. It has a DYNAMICXCF
statement to enable XCF dynamic support, and SOURCEVIPA and
TCPSTACKSOURCEVIPA to enable the distributed DVIPA 201.2.10.11.

Start TCP/IP on each system as shown above.

* On system1, start TCPCS and TCPCS2.

* On system2, start TCPCS3, on system3 start TCPCS6.

* On system1, run the MODDVIPA utility to define the DVIPA 201.2.10.193.
//TCPDVP PROC

/1%

/1%

//TCPDVP EXEC PGM=MODDVIPA ,REGION=0K,TIME=1440, X
// PARM="'POSIX(ON) ALL31(ON)/-p TCPCS -c 201.2.10.193'

//SYSPRINT DD SYSOUT=x,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSERR DD SYSOUT==

//SYSERROR DD SYSOUT=+

//SYSDEBUG DD SYSOUT=+

//SYSUDUMP DD SYSOUT=A

//SYSABEND DD SYSOUT=+

/1%

//*Run program here

/1%

//TCPDVP EXEC PGM=MODDVIPA ,REGION=0K,TIME=1440, X
// PARM="'POSIX(ON) ALL31(ON)/-p TCPCS -d 201.2.10.193'

The PARM field can be -c for create or -d for delete. The example above will create
DVIPA 201.2.10.193 for the TCP/IP named TCPCS. After intermediate program has
completed (and the comment character is removed), the DVIPA will be deleted.

Verifying the DVIPASs in a sysplex

A display command parameter displays Dynamic VIPAs in the sysplex (see

[Figure 35 on page 217). In the following example taken from stack TCPCS, the
ORIGIN lines show that 201.2.10.11 and 201.2.10.12 were created by VIPADEFINE
on this stack, 201.2.10.193 was created by VIPARANGE ioctl (issued through the
MODDVIPA utility), and all of the others were created by VIPABACKUP statements.
The command is:

d tcpip,tcpname,sysplex,vipadyn

The ORIGIN line indicates how the DVIPA is configured on the stack specified by
tcpname. Each stack (TCPNAME) for each system (MVSNAME) is shown with its
status (STATUS). Two other status values not shown in the following example are:

QUIESCING
This DVIPA was a target for distribution and has been removed as a target.
However, it is still servicing one or more connections for this DVIPA. The
DVIPA will be removed when all connections complete.

MOVING
This DVIPA was active on this stack and has been moved to another stack.
Connections on this stack for this DVIPA prior to the move will still be
serviced by this stack until completion.

Chapter 5. Virtual IP Addressing 241

The rank (RANK) indicates which of the stacks is eligible to take over if the stack
on which the DVIPA is active stops. The stack with the highest rank is the one that
will take over the DVIPA.

D TCPIP,TCPCS,SYSPLEX,VIPADYN
EZ782601 SYSPLEX CS VIR4 874
VIPA DYNAMIC DISPLAY FROM TCPCS AT MVS005
IPADDR: 201.2.10.11 LINKNAME: VIPLC9020A0B
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST

TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 BOTH
TCPCS2 ~ MVS004 BACKUP 100 DEST
TCPCS3 MVSO05 BACKUP 010 DEST
TCPCS6 ~ MVS006 ACTIVE DEST

IPADDR: 201.2.10.12 LINKNAME: VIPLC9020A0C
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 DIST
TCPCS2 MVS004 BACKUP 075 DEST
TCPCS3 ~ MVS005 BACKUP 010
IPADDR: 201.2.10.13
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
TCPCS2 ~ MvVS004 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 100
TCPCS3 ~ MVS005 BACKUP 010
IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
TCPCS3 MVS005 ACTIVE 255.255.255.192 201.2.10.0
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080
IPADDR: 201.2.10.22
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
TCPCS3 MVS005 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVSO04 BACKUP 080
TCPCS2 MVS004 BACKUP 075
IPADDR: 201.2.10.193 LINKNAME: VIPLC9020AC1
ORIGIN: VIPARANGE ioctl
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST

TCPCS MVS004 ACTIVE 255.255.255.192 201.2.10.192

TCPCS2, TCPCSS3, and TCPCS6 all display the same information about all the
DVIPAs. ORIGIN fields are displayed for the DVIPAs that are configured on this
stack.

D TCPIP,TCPCS2,SYS,VIPAD
EZ782601 SYSPLEX CS VIR4 877
VIPA DYNAMIC DISPLAY FROM TCPCS2 AT MVS005
IPADDR: 201.2.10.11
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST

TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 ~ MVS005 BACKUP 010 DEST
TCPCS6 MVS006 ACTIVE DEST

IPADDR: 201.2.10.12
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST

242 2/0S V1R4.0 CS: IP Configuration Guide

TCPCS MVS004 ACTIVE
TCPCS2 MVS004 BACKUP
TCPCS3 MVS005 BACKUP

075
010

255.255.

255.240

IPADDR: 201.2.10.13 LINKNAME: VIPLC9020A0D

ORIGIN: VIPADEFINE

RANK

ADDRESS

MASK

201.2.10.0

NETWORK PREFIX

TCPNAME MVSNAME ~ STATUS
TCPCS2 ~ MVS004 ACTIVE
TCPCS MVS004 BACKUP
TCPCS3 MVS005 BACKUP

IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS

100
010

RANK

255.255.

ADDRESS

255.192

MASK

201.2.10.0

NETWORK PREFIX

TCPCS3 MVS005 ACTIVE
TCPCS2 MVS004 BACKUP
TCPCS MVS004 BACKUP

IPADDR: 201.2.10.22
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS

100
080

RANK

255.255.

ADDRESS

255.192

MASK

201.2.10.0

NETWORK PREFIX

TCPCS3 MVS005 ACTIVE
TCPCS MVS004 BACKUP
TCPCS2 ~ MVS004 BACKUP

IPADDR: 201.2.10.193
TCPNAME MVSNAME STATUS

080
075

RANK

255.255.

ADDRESS

255.192

MASK

201.2.10.0

NETWORK PREFIX

TCPCS MVS004 ACTIVE

255.255.

255.192

201.2.10.192

In the following example, TCPCS6 knows about the DVIPAs on the other stacks.

There are no DVIPAs configured on TCPCSB6, thus, no ORIGIN fields displayed.

D TCPIP,TCPCS6,SYS,VIPAD

EZ782601 SYSPLEX CS VIR4 880

NETWORK PREFIX

201.2.10.0

NETWORK PREFIX

201.2.10.0

NETWORK PREFIX

201.2.10.0

NETWORK PREFIX

201.2.10.0

NETWORK PREFIX

201.2.10.0

VIPA DYNAMIC DISPLAY FROM TCPCS6 AT MVS005

IPADDR: 201.2.10.11
TCPNAME MVSNAME STATUS RANK ADDRESS MASK
TCPCS MVS004 ACTIVE 255.255.255.240
TCPCS2 ~ MVS004 BACKUP 100
TCPCS3 MVS005 BACKUP 010
TCPCS6 MVS006 ACTIVE

IPADDR: 201.2.10.12
TCPNAME MVSNAME STATUS RANK ADDRESS MASK
TCPCS MVS004 ACTIVE 255.255.255.240
TCPCS2 ~ MVS004 BACKUP 075
TCPCS3 ~ MVSO005 BACKUP 010

IPADDR: 201.2.10.13
TCPNAME MVSNAME STATUS RANK ADDRESS MASK
TCPCS2 ~ MVS004 ACTIVE 255.255.255.192
TCPCS MVSO04 BACKUP 100
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.21
TCPNAME MVSNAME ~ STATUS RANK ADDRESS MASK
TCPCS3 MVS005 ACTIVE 255.255.255.192
TCPCS2 ~ MVS004 BACKUP 100
TCPCS MVSO04 BACKUP 080

IPADDR: 201.2.10.22
TCPNAME MVSNAME STATUS RANK ADDRESS MASK
TCPCS3 MVS005 ACTIVE 255.255.255.192
TCPCS MVS004 BACKUP 080
TCPCS2 ~ MVS004 BACKUP 075

Chapter 5. Virtual IP Addressing

243

IPADDR: 201.2.10.193
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST

TCPCS MVS004 ACTIVE 255.255.255.192 201.2.10.192

Using NETSTAT support to verify Dynamic VIPA configuration

The netstat commands (TSO NETSTAT, z/OS UNIX onetstat, and MVS console D
TCPIP,,Netstat) have a VIPADCFG (-F) report and a VIPADYN (-v) report. These
reports show the Dynamic VIPA configuration for a particular TCP/IP.

Note: Use the CONFIG (-f) report to verify the rest of the stack’s configuration,
including SOURCEVIPA and TCPSTACKSOURCEVIPA.

The Dynamic VIPA Information section is only displayed when there are DVIPAs
configured on this stack. The VIPA Range section, displayed only if a VIPARANGE
statement was processed in this stacks profile (or OBEYFILE data set), indicates
only that a range was configured. It does not indicate whether any ioctl or BIND has
actually created a DVIPA in the specified range. The VIPA Distribute section is
displayed only if there are VIPADISTRIBUTE statements configured on this stack.

On stack TCPCS, using netstat on OMVS:

netstat -p tcpcs -F
MVS TCP/IP onetstat CS VIR4 TCPIP Name: TCPCS 12:04:15
Dynamic VIPA Information:

VIPA Backup:

IP Address Rank
201.2.10.13 000100
201.2.10.21 000080
201.2.10.22 000080
VIPA Define:
IP Address AddressMask Moveable SrvMgr
201.2.10.11 255.255.255.240 Immediate Yes
201.2.10.12 255.255.255.240 Immediate No
VIPA Range:
AddressMask IP Address Moveable

255.255.255.192 201.2.10.192 NonDisr

VIPA Distribute:

IP Address Port XCF Address SysPt
201.2.10.11 00020 ALL Yes
201.2.10.11 00021 ALL No
201.2.10.12 00020 193.9.200.2 No
201.2.10.12 00021 193.9.200.2 No

VIPA Service Manager:
McastGroup: 245.10.131.201 Port: 01472 Pwd: Yes

On stack, TCPCS2 from the console:

01.55.13 d tcpip,tcpcs2,net,vipadcfg
01.55.14 EZZ25001 NETSTAT CS VIR4 TCPCS2 764
DYNAMIC VIPA INFORMATION:
VIPA BACKUP:
IP ADDRESS RANK

201.2.10.11 000100

z/OS V1R4.0 CS: IP Configuration Guide

201.2.10.12
201.2.10.21
201.2.10.22
VIPA DEFINE:
IP ADDRESS
201.2.10.13
VIPA RANGE:
ADDRESSMASK

000075
000100
000075

ADDRESSMASK

255.255.255.192

IP ADDRESS

255.255.255.192 201.2.10.192

On stack TCPCSS3 from the console:
01.56.42 d tcpip,tcpcs3,net,vipadcfg

MOVEABLE SrvMgr

IMMEDIATE No

MOVEABLE

NONDISR

01.56.43 EZZ25001 NETSTAT CS V1R4 TCPCS3 767
DYNAMIC VIPA INFORMATION:

VIPA BACKUP:
IP ADDRESS
201.2.10.11
201.2.10.12
201.2.10.13

VIPA DEFINE:
IP ADDRESS
201.2.10.21
201.2.10.22

VIPA RANGE:
ADDRESSMASK

RANK

000010
000010
000010

ADDRESSMASK

255.255.255.192
255.255.255.192

IP ADDRESS

255.255.255.192 201.2.10.192

On stack TCPCS6 from the console:

01.57.32 d tcpip,tcpcsb,net,vipadcfg
01.57.32 EZZ2500I NETSTAT CS VIR4 TCPCS6 770

MOVEABLE SrvMgr

IMMEDIATE No
IMMEDIATE No

MOVEABLE

NONDISR

The VIPADYN (-v) report displays all the Dynamic VIPAs available to this stack, as
shown in the following examples.

On stack TCPCS using netstat on OMVS:

netstat -p tcpcs -v
MVS TCP/IP onetstat CS V1R4

IP Address
201.2.10.11
201.2.10.12
201.2.10.13
201.2.10.21
201.2.10.22

AddressMask
255.255.255
255.255.255
255.255.255
255.255.255
255.255.255

TCPI
Status

.240 Active
.240 Active
.192 Backup
.192 Backup
.192 Backup

On stack TCPCS2 from the console:

02.04.09 d tcpip,tcpcs2,net,vipadyn
02.04.09 EZZ25001 NETSTAT CS VIR4 TCPCS2 795

IP ADDRESS
201.2.10.11
201.2.10.12
201.2.10.13

ADDRESSMASK
255.255.255
255.255.255
255.255.255

STATUS
.240 BACKUP
.240 BACKUP
.192 ACTIVE

P Name: TCPCS
Origination
VIPADefine
VIPADefine
VIPABackup
VIPABackup
VIPABackup

ORIGINATION
VIPABACKUP
VIPABACKUP
VIPADEFINE

On stack TCPCS, using the onetstat command:

netstat -p TCPCS2 -v
MVS TCP/IP onetstat CS V1R4

IP Address

AddressMask

TCP
Status

IP Name: TCPCS2
Origination

Chapter 5. Virtual IP Addressing

02:03:07
DistStat
Dist/Dest
Dist

DISTSTAT
DEST
DEST

10:20:58
DistStat

245

201.2.10.11
201.2.10.12
201.2.10.13
201.2.10.21
201.2.10.22

255.255.255.240 Backup
255.255.255.240 Backup
255.255.255.192 Active
255.255.255.192 Backup
255.255.255.192 Backup

On stack TCPCSS3 from the console:
02.05.21 d tcpip,tcpcs3,net,vipadyn

02.05.21

IP ADDRESS
201.2.10.11
201.2.10.12
201.2.10.13
201.2.10.21
201.2.10.22

ADDRESSMASK STATUS
255.255.255.240 BACKUP
255.255.255.240 BACKUP
255.255.255.192 BACKUP
255.255.255.192 ACTIVE
255.255.255.192 ACTIVE

On stack TCPCS6 from the console:

02.05.58 d tcpip,tcpcs6,net,vipadyn
02.05.58 EZZ25001 NETSTAT CS VIR4 TCPCS6

IP ADDRESS
201.2.10.11

ADDRESSMASK STATUS
255.255.255.240 ACTIVE

Verifying Sysplex Distributor workload
The netstat commands (TSO NETSTAT, z/OS UNIX onetstat, and MVS console D
TCPIP,,Netstat) have a VDPT (-O) report and a VCRT (-V) report. Refer to
[Communications Server: IP System Administrator's Commands|for more information
on these commands.

246

VIPABackup
VIPABackup
VIPADefine
VIPABackup
VIPABackup

EZZ25001 NETSTAT CS V1R4 TCPCS3 798

ORIGINATION
VIPABACKUP
VIPABACKUP
VIPABACKUP
VIPADEFINE
VIPADEFINE

801
ORIGINATION

Dest
Dest

DISTSTAT
DEST

DISTSTAT
DEST

Run onetstat -O on the distributing stack to confirm that there are target stacks
available with server applications ready. This display will only show target stacks
that are currently up and have joined the sysplex. The READY field indicates how
many, if any, applications the target TCP/IP, identified by its DestXCF Addr, has
bound to DPort. If none, then this target TCP/IP will not receive any connection
workload. The TotalConn field indicates how many connections this distributing
TCP/IP has forwarded to the target TCP/IP.

Note: TotalConn is a historical count and will wrap.

The following netstat display command on the distributing stack, TCPCS, shows
which target stacks are available with the server applications ready. The target
stack is identified by its Dynamic XCF address (DESTXCF ADDR). The READY
field indicates how many applications on that target stack have bound to the
DPORT. TOTALCONN is the number of all connections the distributing stack,
TCPCS, has routed to the target stack. WLM is the Workload Manager weight value
for the target TCP/IP stack.

d tcpip,tcpcs,net,vdpt

EZ725001 NETSTAT CS VIR4 TCPSVT
DYNAMIC VIPA DISTRIBUTION PORT TABLE:

DEST IPADDR

201.2.10.11
201.2.10.11
201.2.10.11
201.2.10.11
201.2.10.11
201.2.10.11
201.2.10.12
201.2.10.12

DPORT DESTXCF ADDR
00020 193.9.200.1
00020 193.9.200.2
00020 193.9.200.3
00021 193.9.200.1
00021 193.9.200.2
00021 193.9.200.3
00020 193.9.200.2
00021 193.9.200.2

z/OS V1R4.0 CS: IP Configuration Guide

RDY
000
000
000
000
000
000
000
000

TOTALCONN

0000003561
0000003500
0000003700
0000000499
0000000450
0000000415
0000000239
0000000059

WLM

01
01
02

The following netstat display command on the distributing stack displays all current
connections being distributed by TCPCS.

d tcpip,tcpcs,net,vert

EZ725001 NETSTAT CS VIR4 TCPCS 363
DYNAMIC VIPA CONNECTION ROUTING TABLE:

DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
201.2.10.11 00021 193.9.200.5 01029 193.9.200.1
201.2.10.11 00021 193.9.200.8 01050 193.9.200.2
201.2.10.11 00021 193.9.200.11 01079 193.9.200.3
201.2.10.12 00021 193.9.200.9 01030 193.9.200.2

Dynamic VIPAs and routing protocols

OMPROUTE

With Dynamic VIPAs, IP addresses may move from one stack to another. These
changes need to be communicated to the network. Therefore, dynamic routing
should be implemented when Dynamic VIPAs are being used.

The names of Dynamic VIPA interfaces are assigned dynamically by the stack when
a Dynamic VIPA interface is created. Therefore, the Name field set on the Interface
or OSPF_Interface statement for a Dynamic VIPA will be ignored by OMPROUTE.

It is recommended that a host have an Interface or OSPF_Interface definition for
every Dynamic VIPA address which that host might own. Because this could be a
large number of interfaces, additional wildcard capabilities have been added to
OMPROUTE, for Dynamic VIPA interfaces only.

Ranges of Dynamic VIPA interfaces can be defined using the subnet mask
parameter on the OSPF_Interface or Interface statement. The range defined will be
all the IP addresses that fall within the subnet defined by the mask and the IP
address. The following example defines a range of Dynamic VIPA addresses from
10.138.165.80 to 10.138.165.95:
OSPF_Interface

IP_address = 10.138.165.80

Name = dummy_name (see note)
Subnet_mask = 255.255.255.240;

Note: The Name parameter is required and must be unique, but it is not actually
used for Dynamic VIPAs.

For consistency with the VIPARANGE statement in the TCP/IP profile, any value
that may fall within the range can be used with the mask to define a range of
Dynamic VIPAs. The interface statement in the following example has the same
meaning as the one in the example above:
OSPF_Interface

IP_address = 10.138.165.87

Name = dummy_name
Subnet_mask = 255.255.255.240;

Notes:

1. When defining ranges, it is not necessary or desirable to code a destination
address. OMPROUTE will automatically set the destination address of a
Dynamic VIPA to its IP address.

2. There is nothing in the interface definition statements that informs OMPROUTE
that a particular interface definition statement is for a Dynamic VIPA or a range

Chapter 5. Virtual IP Addressing 247

248

of Dynamic VIPAs. Rather, OMPROUTE learns this information from the stack
when these interfaces are created or taken over.

The MTU size defined on OSPF_INTERFACE statements limits the size of
advertisements that can be sent or received over OMPROUTE interfaces.
OMPROUTE cannot build an advertisement whose size would exceed the largest
MTU size of all its interfaces. Also, OMPROUTE cannot receive an advertisement
that is larger than the largest MTU size defined for all its interfaces. In either of
these cases, you will see the following message:

EZZ79671 ADVERTISEMENT DISCARDED, OVERFLOWS BUFFER: LS
TYPE x ID x.x.x.x ORG y.y.y.y

When this happens on an originating host, that host will not be able to send router
Link State Advertisements (LSAs), and therefore other hosts will not be able to
calculate routes to any destinations (for example, VIPAs) owned by the originating
host. OMPROUTE will terminate if it encounters this condition. If it cannot send its
router LSA, it is useless as a router. When this happens on a receiving host, that
host will not be able to compute routes to any destinations advertised in the
discarded LSA. Also note that other OSPF implementations might have similar or
stricter limitations, in which case they would be unable to receive or propagate large
router LSAs received from OMPROUTE. These scenarios can severely affect
network connectivity and routing capability. If large numbers of VIPA interfaces are
going to be used, we recommend you examine OSPF MTU sizes throughout your
network to ensure that large router LSAs can be propagated.

Normally, large router LSAs would not be a problem, as LSAs seldom exceed their

allowed MTU sizes. However, if a large number of VIPA or dynamic VIPA interfaces
are defined on a host, this can become a consideration. The size of the router LSA
will include 52 bytes for headers, plus the number of bytes required to advertise the
host’'s owned interfaces. The number of bytes required for each interface is:

VIPA 12 bytes, plus 12 bytes for each VIPA subnet (see
the following example)

Point-to-point 24 bytes

Point-to-multipoint 12 bytes, plus 12 bytes for each neighbor on the
interface

All other types 12 bytes

For owned VIPA interfaces, OMPROUTE normally advertises both host and subnet
routes. The size of router LSAs required can be minimized by careful subnet
planning. For example, assume the following definition exists in the OMPROUTE
configuration file:
OSPF_Interface

IP_Address=3.3.3.*

Name = VIPAIA

Subnet_Mask=255.255.255.252

Attaches_To Area=1.1.1.1

MTU=1024

CostO = 1;

If 101 VIPA interfaces, numbered 3.3.3.1 to 3.3.3.101, are activated, in addition to
the headers and any other owned interfaces, OMPROUTE would need 1512 bytes
to advertise 126 links in its router LSA (1 host route to each of the VIPAs, plus 25
subnet routes since each subnet contains only four addresses).

z/OS V1R4.0 CS: IP Configuration Guide

By contrast, assume the following definition exists in the OMPROUTE configuration
file:
OSPF_Interface

IP_Address=3.3.3.*

Name = VIPAlA

Subnet_Mask=255.255.255.0

Attaches_To_Area=1.1.1.1

MTU=1024

Costd = 1;

If the same 101 VIPA interfaces are activated, OMPROUTE would advertise 102
links in its router LSA (1 host route to each VIPA, plus 1 subnet route since all the
VIPAs are in the same subnet). This would only require 1224 bytes to advertise the
VIPAs. If the MTU size on the network is 1500, this can make the difference
between being able to send or receive a router LSA or not being able to send or
receive a router LSA. This limitiation can further be circumvented by suppressing
VIPA host routes by coding SUBNET=YES on the OSPF_INTERFACE statement for
the VIPA interfaces. However, there are limits on when this can be done. For
details, see the [z20S Communications Server: IP Configuration Reference)

RIP (Routing Information Protocol)

If using RIP services and Host Route advertising is not supported by adjacent
routers (that is, inability to learn host routes), the following restrictions for VIPA
addresses must be applied to benefit from fault tolerance support:

» If you use subnetting and VIPA addresses are in the same network as the
physical IP addresses, the subnetwork portion of any VIPA addresses must not
be the subnetwork portion of any physical IP addresses in the network. In this
case, assign a new subnetwork for the VIPA address.

 If subnetting is not used on any physical interface, the network portion of any
VIPA addresses must not be the network portion of any physical IP addresses in
the network. In this case, assign a new network for the VIPA address, preferably
a class C network address.

If using RIP services and Host Route advertising is supported by adjacent routers,
the network or subnetwork portions of VIPA addresses can be the same across
multiple z/OS TCP/IP stacks in the network. To enable Host Route advertising in
OMPROUTE, configure RIP_Interface Send_Host_Routes=YES.

Chapter 5. Virtual IP Addressing 249

250 2/0S V1R4.0 CS: IP Configuration Guide

Chapter 6. TCP/IP in a sysplex

The increasing demands of network servers, and in particular z/Series servers, has
led to the creation of different techniques to address performance requirements
when a single server is not capable of providing the availability and scalability
demands placed on it by its clients. Specifically, network solutions make use of
what is referred to as the clustering technique, whereby multiple servers are
associated together into a cluster to provide sufficient processing power and
availability characteristics to handle the demands of the clients.

In the scope of this chapter, this cluster functionality is provided by the sysplex.
That is, the sysplex provides the necessary capability to cluster together a number
of z/Series servers that cooperate with one another to deliver the processing power
needed to service the demands required of a particular service environment.

Solutions utilizing the clustering approach to increase server availability and
processing capability attempt to provide mechanisms by which they ensure the
viability of the cluster in an environment containing a large number of clients
generating a potentially high number of requests. To do so, the cluster technique
can provide for two main objectives, high availability and load balancing. In some
cases, clustering techniques address only high availability, as is the case with
Dynamic VIPA that provides for availability in spite of potential TCP/IP stack or z/OS
image failures. In other cases, the intent is to provide for both high availability and
load balancing, as is done by the Domain Name System/Workload Manager
solution (DNS/WLM) and Sysplex Distributor.

In general, load balancing refers to the ability to utilize different systems within the
cluster simultaneously, thereby taking advantage of the additional computational
function of each. Further, clustering techniques addressing load balancing lead to
other system requirements, such as that of a single systemwide image (one identity
by which clients access the system), horizontal growth, and ease of management.

The traditional view of a single server has been primarily a single machine with
perhaps a few network interfaces (IP addresses). This tends to lead to many
potential points of failure within the server: the machine itself (hardware), the
operating system (including TCP/IP stack) kernel executing on the machine, or a
network interface (and the IP address associated with it). Static Virtual IP Addresses
(VIPASs) exclude the network interface as a point of failure while Dynamic VIPAs
additionally aid with server (image) or kernel failure. In this way, high availability is
seen as the availability of the entire server cluster and the service it provides.
Further, VIPAs can be used in conjunction with the load balancing solutions
discussed in this document, DNS/WLM and Sysplex Distributor.

Clustering techniques that address the load balancing of connections requests also
typically provide for some high availability. That is, these techniques dispatch
connections to target servers and can exclude failed servers from the list of target
servers that can receive connections. In this way, the dispatching function avoids
routing connections and requests to a server incapable of satisfying such requests.

Load balancing is the ability for a cluster to spread workload evenly (or based on
some policy) to target servers comprising the cluster. Usually, this load balancing is
measured by some notion of perceived load on each of the target servers. This
chapter describes two techniques that provide load balancing: DNS/WLM and
Sysplex Distributor. Each identifies the target zSeries servers willing to receive
client connections based on some specification.

© Copyright IBM Corp. 2000, 2002 251

By providing load balancing, clustering techniques must also provide for other
system requirements in addition to the dispatching of connections. These include
the ability to advertise some single systemwide image or identity so that clients can
uniquely and easily identify the service. Additionally, clustering techniques should
also provide for horizontal growth of the system and ease of management.

There is an excellent description of sysplexes in |z/OS Parallel Sysplex Overview{
Refer to the Redbook, TCP/IP in a Sysplex, for more detailed information on
implementing load balancing and availability in your sysplex.

Connectivity in a sysplex

With Dynamic VIPAs, IP addresses may move from one stack to another. These
changes need to be communicated to the network. Therefore, dynamic routing
should be implemented when dynamic VIPAs are being used. Refer to

|VIPAs and routing protocols” on page 247| for more detailed information.

Dynamic XCF

The IPCONFIG DYNAMICXCF (Dynamic XCF) statement can be used to create
trusted, internal links to other stacks within a sysplex. Dynamic XCF creates a
single IP address by which all other stacks in the sysplex may reach the stack.
Most point-to-point links have their own unique IP address. A unique pair of IP
addresses is needed for each stack within a sysplex using normal point-to-point
links. This tends to use more IP addresses. IP addresses can be saved by using
Dynamic XCF. Additionally, the Dynamic XCF statement automatically generates the
appropriate DEVICE, LINK, HOME, BSDROUTINGPARMS and BEGINROUTES
definitions (as described below) and activates the devices to enable the stack to
communicate with other stacks in the sysplex.

Dynamic XCF devices and links, when activated, appear to the stack as though
they had been defined in the TCP/IP profile. They can be displayed using standard
commands. Dynamic XCF is activated via the DYNAMICXCF keyword on the
IPCONFIG statement, which is described in detail below.

Dynamic XCF can be used to generate dynamic definitions for TCP/IP stacks that
reside on another z/OS host in a sysplex and for additional TCP/IP stacks that
reside on the same z/OS host.

The minimum requirements in order for TCP/IP stacks to utilize XCF Dynamics
differ based on whether same host or inter-host communication is being used. In
order to generate definitions for two TCP/IP stacks that reside on different MVS
hosts:

» Both MVS hosts must belong to the same sysplex.

* VTAM must have XCF communications enabled by specifying XCFINIT=YES as
a startup parameter or by activating the VTAM major node, ISTLSXCF. For
details about configuration, refer to|z/OS Communications Server: SNA Network|
[/mplementation Guide,

* |IPCONFIG DYNAMICXCF must be specified in the TCP/IP profile of each stack.

With this configuration, both same host and inter-host communication can be
performed using Dynamic XCF.

In order to generate definitions for two TCP/IP stacks that reside on the same MVS
host, you are required to specify IPCONFIG DYNAMICXCF in the TCP/IP profile of
each stack.

252 2/0S V1R4.0 CS: IP Configuration Guide

At initialization, each TCP/IP stack configured for XCF joins a well-known XCF
group. When other stacks in the group discover the new stack, the definitions are
created automatically, the links are activated, and the remote IP address for each
link is added to the routing table. After the remote IP address has been added, IP
traffic proceeds as usual.

In VTAM, you must activate the XCF major node. You can do this using the start
option XCFINIT=YES. If dynamically defined XCF definitions have been created for
another VTAM in the sysplex that has since stopped and restarted with a different
CPName, Dynamic XCF recognizes this situation and automatically modifies
existing definitions to accommodate the CPName change. If the XCF major node is
inactive when TCP/IP is started and the XCF major is not activated until after
TCP/IP has finished initialization, TCP/IP will not generate any dynamic definitions
for other TCP/IP hosts already started in the sysplex until either:

e A new TCP/IP host is detected

» A profile related operator command is issued (such as VARY TCPIP,,OBEYFILE,
or a START or STOP command)

To request dynamics for XCF or same host connections, enter the following in the
IPCONFIG statement:

DYNAMICXCF IPAddress SubnetMask CostMetric

If TCP/IP detects another instance of TCP/IP on the same z/OS and, if no device
exists with the name IUTSAMEH, and if no link exists with the name
EZASAMEMVS, internal definitions equivalent to the following are created:

DEVICE IUTSAMEH MPCPTP AUTORESTART
Device definition to obtain the most efficient stack-to-stack communications
within the same MVS image.

LINK EZASAMEMVS MPCPTP IUTSAMEH
Link definition for the IUTSAMEH device.

HOME IPAddress EZASAMEMVS
Associates the IP address with the IUTSAMEH link.

BSDROUTINGPARMS EZASAMEMVS 65535 CostMetric SubnetMask
DestlPAddress
Defines a new link to the OROUTED routing daemon.

START IUTSAMEH
Starts the IUTSAMEH device.

Note: The DestlPAddress is always 0.

If TCP/IP detects another instance of TCP/IP in the sysplex, no device with the
name of the CPName of the remote VTAM exists, no iQDIO (internal Queued Direct
Input/Output, or HiperSockets) connectivity between the two images exists, and no
link exists with the name EZAXCFxx [where xx is the value of the MVS system
symbol (SYSCLONE) for the MVS hosting the VTAM with the device name], internal
definitions equivalent to the following are created:

DEVICE CPName MPCPTP AUTORESTART
Device definition to communicate with TCP/IP stacks hosted by the remote
VTAM.

LINK EZAXCFnn MPCPTP CPName
Link definition for the device, where nn is the SYSCLONE value for the
remote VTAM and MVS.

Chapter 6. TCP/IP in a sysplex 253

254

HOME IPAddress EZAXCFnn
Associates the IP address with the dynamic XCF link.

BSDROUTINGPARMS EZAXCFnn 55296 CostMetric SubnetMask
DestIPAddress
Defines the new link to the OROUTED routing daemon.

START CPName
Starts the specified device.

Notes:

1. If EZAXCFnn is already defined as a link name or the CPName is already
defined as a device name, then Dynamic XCF definitions will not be generated
for discovery of another stack in the same MVS image.

2. The DestlPAddress is always zero.

If TCP/IP detects another instance of TCP/IP in the sysplex, the images reside on
the same CEC, iQDIO connectivity between the two images exists, the host
processor supports iQDIO and z/OS CS is properly configured, and no link exists
with the name IQDIOLNKxxxxxxxx (where xxxxxxxx is the hexadecimal
representation of the IP address specified on the IPCONFIG DYNAMICXCF
statement), internal definitions equivalent to the following are created:

DEVICE IUTIQDIO MPCIPA AUTORESTART
Device definition to communicate with TCP/IP stacks hosted by the remote
VTAM.

LINK IQDIOLNKnnnnnnnn IPAQIDIO IUTIQDIO
Link definition for the device, where nnnnnnnn is the hexadecimal
representation of the IP address specified on the IPCONFIG DYNAMICXCF
statement (that is, IPAddress).

HOME IPAddress IQDIOLNKnnnnnnnn
Associates the IP address with the dynamic XCF link.

BSDROUTINGPARMS IQDIOLNKnnnnnnnn 57344 CostMetric SubnetMask
DestIPAddress
Defines the new link to the OROUTED routing daemon.

START IUTIQDIO
Starts the specified device.
Notes:

1. If IQDIOLNKnnnnnnnn is already defined as a link name or IUTIQDIO is already
defined as a device name, Dynamic XCF definitions will not be generated for
discovery of another stack in the same MVS image.

2. The DestIPAddress is always zero.

For details about these XCF-related statements, refer to|z/0S Communicationd
[Server: IP Configuration Reference For information about changes to NETSTAT
displays of Dynamic XCF settings, refer to |z/OS Communications Server: IP Systen1
|Administrator's Commands,

IUTSAMEH

Communication Server provides internal links between TCP/IP stacks that are
running within the same MVS image. This support is referred to as a Same Host
(IUTSAMERH) link. If IPCONFIG DYNAMICXCEF is defined, TCP/IP always creates
and activates a same host (IUTSAMEH) device and link (unless a static IUTSAMEH
device is already defined) even if this is the only stack on the MVS image. When
TCP/IP activates the IUTSAMEH device, VTAM dynamically builds the IUTSAMEH

z/OS V1R4.0 CS: IP Configuration Guide

TRLE. The generated device name is "IUTSAMEH" and the generated link name is
"EZASAMEMVS". As other stacks are brought up within the same MVS image, a
host route is created to each of these stacks across the same host link. It is
recommended that users do not configure a static device for IUTSAMEH (allow
TCP/IP to dynamically create the device and link). Communications Server also
uses the IUTSAMEH link for Enterprise Extender support.

XCF

When a subsequent stack within the sysplex is started which is not within the same
MVS image, TCP/IP creates and activates an XCF device and link (unless a static
XCF device is already defined). The XCF links connect using the SYSPLEX
Coupling Facility (or CTC links). A new device and link are created for each
corresponding stack within the sysplex. The generated device name is the
(SNA/APPN) CP name of the remote VTAM. The generated link name is
"EZAXCFxx" where xx = the two-character sysclone value. A host route across the
XCF link is created when the XCF link is successfully activated.

Examples of definitions generated by Dynamic XCF
Example 1:

This configuration consists of two MVS systems (MVS1,MVS2) that are members of
the same sysplex. Each MVS host has one TCP/IP stack (TCPIP1 and TCPIP2,
respectively). From the syntax descriptions described above, the following
information is needed to generate the dynamic definitions:

* MVS sysclone value

* VTAM CPName

+ Status of XCF in VTAM

» The values specified on the IPCONFIG DYNAMICXCF keyword

Using the following user definitions:

MVS1:

Sysclone = Al

VTAM Cpname = VTAM1

VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3

MVS2:

Sysclone = B2 VTAM

Cpname = VTAM2 VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP2: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.2 255.255.255.248 2

After both TCPIP1 and TCPIP2 have been started, the following definitions will be
generated.

TCPIP1 will generate the equivalent of these definitions:.

DEVICE VTAMZ2 MPCPTP AUTORESTART

LINK EZAXCFB2 MPCPTP VTAM2

HOME 9.1.1.1 EZAXCFB2

BSDROUTINGPARMS EZAXCFB2 55296 3 255.255.255.248 0
START VTAM2

TCPIP2 will generate:

DEVICE VTAM1 MPCPTP AUTORESTART

LINK EZAXCFA1 MPCPTP VTAM1

HOME 9.1.1.2 EZAXCFA1

BSDROUTINGPARMS EZAXCFAl 55296 2 255.255.255.248 0
START VTAM1

Chapter 6. TCP/IP in a sysplex 255

256

When an XCF link becomes active, each TCPIP will generate a route to the other
TCPIP over the XCF link. In this example, when the XCF link becomes active,
TCPIP1 will generate a route to TCPIP2 over the XCF link and vice versa.

Example 2:

The configuration is the same as Example 1 except a second TCP/IP stack
(TCPIP1A) was added to MVS1.

Using the following user definitions:

MVS1:

Sysclone = Al

VTAM Cpname = VTAM1

VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3
TCPIP1A: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

MVS2:

Sysclone = B2

VTAM Cpname = VTAM2

VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP2: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.2 255.255.255.248 2

After both TCPIP1 and TCPIP2 have been started, the following definitions will be
generated, as in Example 1.

TCPIP1 will generate the equivalent of these definitions:

DEVICE VTAMZ MPCPTP AUTORESTART

LINK EZAXCFBZ MPCPTP VTAM2

HOME 9.1.1.1 EZAXCFB2

BSDROUTINGPARMS EZAXCFB2 55296 3 255.255.255.248 0
START VTAM2

TCPIP2 will generate:

DEVICE VTAM1 MPCPTP AUTORESTART

LINK EZAXCFA1 MPCPTP VTAM1

HOME 9.1.1.2 EZAXCFA1

BSDROUTINGPARMS EZAXCFAl 55296 2 255.255.255.248 0
START VTAM1

Now, TCPIP1A is started. TCPIP1 and TCPIP2 recognize that TCPIP1A has
started. TCPIP1A will generate definitions for both TCPIP1 and TCPIP2. TCPIP1
will generate IUTSAMEH definitions for TCPIP1. However, TCPIP2 does not need
to generate and will not generate any new definitions except for routing information
for TCPIP1A. New definitions do not need to be created because the DEVICE and
LINK definitions are based on the discovery of a new VTAM node in the sysplex.
(The DEVICE name is the VTAM CPName.)

TCPIP1 will generate the equivalent of these definitions:

DEVICE IUTSAMEH MPCPTP AUTORESTART

LINK EZASAMEMVS MPCPTP IUTSAMEH

HOME 9.1.1.1 EZASAMEMVS

BSDROUTINGPARMS EZASAMEMVS 65535 3 255.255.255.248 0
START IUTSAMEH

When the IUTSAMEH connection becomes active, each TCPIP will generate a
route to the other TCPIP over the IUTSAMEH connection.

TCPIP2 does not generate anything.

z/OS V1R4.0 CS: IP Configuration Guide

TCPIP1A will generate:

DEVICE IUTSAMEH MPCPTP AUTORESTART

LINK EZASAMEMVS MPCPTP IUTSAMEH

DEVICE VTAMZ2 MPCPTP AUTORESTART

LINK EZAXCFB2 MPCPTP VTAM2

HOME 9.1.1.3 EZAXCFB2

HOME 9.1.1.3 EZASAMEMVS

BSDROUTINGPARMS EZAXCFB2 55296 0 255.255.255.248 0
BSDROUTINGPARMS EZASAMEMVS 65535 0 255.255.255.248 0
START IUTSAMEH

START VTAM2

When the IUTSAMEH connection becomes active, each TCPIP will generate a
route to the other TCPIP over the IUTSAMEH connection.

Example 3:

To continue Example 2, add another MVS host (MVS3) with a VTAM node (VTAM3)
with one TCP/IP stack (TCPIP3).

MVS3:

Sysclone = C3

VTAM Cpname = VTAM3

VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP3: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

In this example, the previously active TCP/IP stacks will generate definitions for
TCPIP3 because a new VTAM stack has become active in the sysplex. TCPIP3 will
generate definitions for definitions for TCPIP1/TCPIP1A and TCPIP2.

TCPIP1 will generate the equivalent of these definitions:

DEVICE VTAM3 MPCPTP AUTORESTART

LINK EZAXCFC3 MPCPTP VTAM3

HOME 9.1.1.1 EZAXCFC3

BSDROUTINGPARMS EZAXCFC3 55296 3 255.255.255.248 0
START VTAM3

TCPIP2 will generate:

DEVICE VTAM3 MPCPTP AUTORESTART

LINK EZAXCFC3 MPCPTP VTAM3

HOME 9.1.1.2 EZAXCFC3

BSDROUTINGPARMS EZAXCFC3 55296 2 255.255.255.248 0
START VTAM3

TCPIP1A will generate:

DEVICE VTAM3 MPCPTP AUTORESTART

LINK EZAXCFC3 MPCPTP VTAM3

HOME 9.1.1.3 EZAXCFC3

BSDROUTINGPARMS EZAXCFC3 55296 0 255.255.255.248 0
START VTAM3

TCPIP3 will generate:

DEVICE VTAM1 MPCPTP AUTORESTART

LINK EZAXCFA1 MPCPTP VTAM1

DEVICE VTAMZ2 MPCPTP AUTORESTART

LINK EZAXCFBZ MPCPTP VTAM2

HOME 9.1.1.3 EZAXCFAl

HOME 9.1.1.3 EZAXCFB2

BSDROUTINGPARMS EZAXCFAl 55296 0 255.255.255.248 0
BSDROUTINGPARMS EZAXCFB2 55296 0 255.255.255.248 0
START VTAM1

START VTAM2

Chapter 6. TCP/IP in a sysplex 257

258

Example 4:

This example illustrates how Dynamic XCF can generate IUTSAMEH definitions
without VTAM having its XCF enabled.

MVS1:

Sysclone = Al (not used in this example)

VTAM Cpname = VTAM1 (not used in this example)

VTAM has XCFINIT=NO specified and has not activated the major node ISTLSXCF.
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3
TCPIP1A: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

TCPIP1 will generate the equivalent of these definitions:

DEVICE IUTSAMEH MPCPTP AUTORESTART

LINK EZASAMEMVS MPCPTP IUTSAMEH

HOME 9.1.1.1 EZASAMEMVS

BSDROUTINGPARMS EZASAMEMVS 65535 3 255.255.255.248 0
START IUTSAMEH

TCPIP1A will generate:

DEVICE IUTSAMEH MPCPTP AUTORESTART

LINK EZASAMEMVS MPCPTP IUTSAMEH

HOME 9.1.1.3 EZASAMEMVS

BSDROUTINGPARMS EZASAMEMVS 65535 0 255.255.255.248 0
START IUTSAMEH

You can delete dynamically defined XCF devices and links by first stopping the
devices to be deleted and then issuing a VARY TCPIP,,OBEYFILE command that
contains a DELETE LINK EZAXCFxx and DELETE DEVICE. Because the HOME
statement processing does not affect dynamically defined XCF HOME list entries,
the HOME nn.nn.nn.nn EZAXCFxx entry is automatically deleted by DELETE LINK.

Notes:

1. The IP address of the dynamically defined devices can be changed. Because
Dynamic XCF uses the same IP address for all of the dynamically defined
devices, all of the dynamic devices IP addresses will be changed. An individual
dynamic device cannot be changed. To change the IP addresses:

a. Stop all of the dynamically defined devices.

b. Issue the VARY TCPIP,,OBEYFILE command, which contains the changed
IP address on the DYNAMICXCF statement.

After they have all stopped, Dynamic XCF will change the IP address and
automatically restart all of the dynamically defined devices. Dynamic XCF
changes the IP address for dynamically defined XCF, IUTSAMEH links, or
both in exactly the same way (with the same operational characteristics) as
if you had changed the IP address for static XCF or IUTSAMEH definitions
and then executed VARY TCPIP,,OBEYFILE.

2. Because the interfaces generated by Dynamic XCF use a single IP address, the
output of the SIOCGIFCONF ioctl() contains multiple entries with the same IP
address. If an application is using the SIOCGIFCONF output to issue bind() to
all the entries returned, the application could receive EADDRINUSE on a bind()
if there are multiple XCF devices defined by Dynamic XCF in the list.

3. If you want to define a static route to a link which is generated by Dynamic XCF,
you must wait until the dynamic devices are started and then use the VARY
TCPIP,,OBEYFILE command. The GATEWAY or BEGINROUTES statement that
refers to a dynamically defined linkname must be in a separate data set from
the data set used to define the dynamic devices (either initial profile data set or
another OBEYFILE data set).

z/OS V1R4.0 CS: IP Configuration Guide

4. Even though the HOME, BSDROUTINGPARMS and BEGINROUTES definitions
are full replacement keywords, the definitions generated by Dynamic XCF will
not replace any existing definitions. Likewise, user-defined HOME,
BSDROUTINGPARMS and BEGINROUTES definitions will not affect existing or
future definitions generated by Dynamic XCF.

iQDIO (Internal Queued Direct Input/Output or HiperSockets)
iQDIO (Internal Queued Direct Input/Output or HiperSockets) is a new zSeries
hardware feature that provides high performance internal communications between
LPARs within the same CEC without the use of any additional or external hardware
equipment (e.g. channel adapters, LANSs, etc.). This support is also referred to as
HiperSocket communications.

If the host processor supports iQDIO and CS is properly configured, CS will attempt
to create XCF connectivity between same CEC LPARs using an iQDIO link. In
cases in which the iQDIO link could not be activated, then TCP/IP will create a
normal XCF link.

The DYNAMICXCF iQDIO device and link are dynamically built and the device is
started during TCP/IP DYNAMICXCF stack initialization. The DYNAMICXCF iQDIO
device and link are not (cannot be) configured by the user. The generated device
name is IUTIQDIO. The generated link name is IQDIOLNKxxxxxxxx where XXXXxxxx
= the character representation of the hexadecimal version of the DYNAMICXCF IP
address. In general where an XCF link would normally have been used (for
intra-CEC) an iQDIO link will be used.

Similar to IUTSAMEH, VTAM will dynamically build the TRLE for IUTIQDIO when
the IUTIQDIO device is started. The TRLE statement is not configured (defined) by
the user.

Although the DYNAMICXCEF iQDIO device is not configured with TCP/IP device and
link statements, and the TRLE is not defined by the user, the following steps must
be taken to define the iQDIO subchannel devices and IQD CHPID:

1. Using HCD or IOCP, the system administrator must define (create the IOCDS)
the iQDIO (IQD) CHPID (Channel Path ID) and subchannel devices to the
applicable LPARs. In order to dynamically build the iQDIO TRLE, VTAM requires
a minimum of 3 subchannel devices configured with each IQD CHPID within
HCD. The maximum number of subchannel devices that VTAM will use
(associate with each TRLE or MPC group) is 10. For additional details regarding
configuring the iQDIO subchannel devices and IQD CHPID, refer to
[Planning and JAppendix D, “Using HCD” on page 757

2. When more than one IQD CHPID is configured to a specific LPAR, VTAM start
option IQDCHPID must be used to specify which specific IQD CHPID this LPAR
should use. The VTAM start option controls which IQD CHPID (and related
subchannel devices) VTAM selects to include in the iQDIO (IUTIQDIO) MPC
Group when it is dynamically built for DYNAMICXCF iQDIO connectivity. Start
option IQDCHPID controls the VTAM 1QD CHPID selection for the
DYNAMICXCF iQDIO device IUTIQDIO (MPC group) only. It does not control
IQD CHPID selection for a user defined iQDIO (MPCIPA) device. However, a
user defined iQDIO device (IQD CHPID) cannot use (conflict with) the same
IQD CHPID that the DYNAMICXCF iQDIO device is currently using.

For example, if IQD CHPID 'FE’x is currently in use by DYNAMICXCF due to
one of the following:

a. VTAM start option IQDCHPID=FE is currently specified

Chapter 6. TCP/IP in a sysplex 259

b. VTAM start option IQDCHPID=ANY is currently specified, but the
DYNAMICXCF iQDIO device IUTIQDIO is currently using the 'FE’ CHPID

then an attempt to configure and start a user defined iQDIO device IUTIQDFE
will not be allowed (IQD CHPIDs conflict). This option can also be modified with
a VTAM modify command. In most cases, the default setting will be sufficient.
For additional details regarding this start option refer to them
[Communications Server: SNA Resource Definition Reference|

For additional details regarding iQDIO, refer to f‘HiperSockets concepts and|
lconnectivity” on page 130}

Workload balancing

Load balancing is the ability for a cluster to spread workload evenly (or based on
some policy) to target servers comprising the cluster. Usually, this load balancing is
measured by some notion of perceived load on each of the target servers. This
document describes and compares three techniques that provide load balancing:
DNS/WLM, Network Dispatcher, and Sysplex Distributor. Each identifies the target
z/Series servers willing to receive client connections based on some specification.

By providing load balancing, clustering techniques must also provide for other
system requirements in addition to the dispatching of connections. These include
the ability to advertise some single systemwide image or identity so that clients can
uniquely and easily identify the service. Additionally, clustering techniques should
also provide for horizontal growth of the system and ease of management.

Single systemwide image

Clients connecting to a cluster should not be aware of the internal makeup of a
cluster. More specifically, clients should not even be aware that the service they are
requesting is actually being serviced by a collection or cluster of servers. Instead,
clients must be provided with some single image identifier to be used when
connecting to the service. DNS/WLM uses some specific hostname to identify a
service within the cluster. In this manner, clients making requests of the service use
the hostname as the single systemwide identity. In Network Dispatcher and Sysplex
Distributor (SD), however, the identity is that of some IP address associated with
the cluster. In the case of Sysplex Distributor, this address is a distributed Dynamic
Virtual IP Address (DVIPA).

Horizontal growth

As the clients’ demands on the service increase, clusters must provide a way to
expand the cluster of servers to accommodate for such growing demand. Put in
another way, the cluster must provide a mechanism by which to add servers without
disrupting the operation of the cluster. To this end, the service is made available to
clients at all times and can grow horizontally to accommodate for increased demand
placed on the cluster by the clients.

Ease of management

260

The administrative burden associated with the cluster should not increase as we
add servers to the cluster. It is desirable to use the same configurations for many
systems in the cluster (sysplex). Within a sysplex, servers are homogenous, since a
sysplex is comprised solely of z/Series servers. As such, many of the configurations
can be shared among the different z/Series servers, thereby reducing the

z/OS V1R4.0 CS: IP Configuration Guide

administrative burden associated with the sysplex. Additionally, as the size of the
cluster increases, the administrative overhead in adding systems to the cluster
should be as low as possible.

DNS/WLM

The DNS solution is based on the DNS name server and the z/OS Workload
Manager. This solution is only available with the BIND 4.9.3 name server and not
with the BIND 9 name server. Intelligent sysplex distribution of connections is
provided through cooperation between WLM and DNS. For customers who elect to
place a name server in a z/OS sysplex, the name server can utilize WLM to
determine the best system to service a given client request.

In general, DNS/WLM relies on the hostname to IP address resolution for the
mechanism by which to distribute load among target servers. Hence, the single
system image provided by DNS/WLM is that of a specific hostname. Note that the
system most suitable to receive an incoming client connection is determined only at
connection setup time. Once the connection is made, the system being used cannot
be changed without restarting the connection.

The DNS approach works only in a sysplex environment, because the Workload
Manager requires it. If the server applications are not all in the same sysplex, then
there can be no single WLM policy and no meaningful coordination between WLM
and DNS.

External IP workload balancing

IBM’s Network Dispatcher (part of WebSphere® Edge Server) and Cisco’s
Multi-Node Load Balancer (MNLB) are examples of external IP workload balancing
solutions. Such solutions exist outside the Sysplex, but may direct work into the
Sysplex. Where DNS/WLM resolves a name to different IP addresses as a means
of balancing work, external IP workload balancing solutions define a single IP
address representing all instances of the server, and then balance new work
requests (new TCP connection requests) among available servers. These external
solutions rely on an agent in the Sysplex to deliver workload manager information
for nodes with stacks on which application instances reside. All stacks hosting
application instances have the same IP address defined as a hidden or loopback
address. This means that normal IP routing cannot be used between the decision
point and the target stack, so that either the decision point must be directly
connected with the target stack - with no intervening routers - or another solution
such as Generic Routing Encapsulation or other proprietary solutions must be used.

Sysplex Distributor

Sysplex Distributor is the state of the art in connection dispatching technology
among z/Series IP servers. Essentially, Sysplex Distributor extends the notion of
Dynamic VIPA and Automatic VIPA Takeover to allow for load distribution among
target servers within the sysplex. It combines technology used with Network
Dispatcher for the distribution of incoming connections with that of Dynamic VIPAs
to ensure high availability of a particular service within the sysplex.

Technically speaking, the functionality of Sysplex Distributor is similar to that of
Network Dispatcher in that one IP entity advertises ownership of some IP address
by which a particular service is known. In this fashion, the single system image of
Sysplex Distributor is also that of a special IP address. However, in the case of
Sysplex Distributor, this IP address (known as the cluster address in Network
Dispatcher) is called a distributed DVIPA. Further, in Sysplex Distributor, the IP

Chapter 6. TCP/IP in a sysplex 261

262

entity advertising the distributed DVIPA and dispatching connections destined for it
is itself a system image within the sysplex, referred to as the distributing stack.

Like Network Dispatcher and DNS/WLM, Sysplex Distributor also makes use of
Workload Manager (WLM) and its ability to gauge server load. In this paradigm,
WLM informs the distributing stacks of this server load so that the distributing stack
may make the most intelligent decision regarding where to send incoming
connection requests. Additionally, Sysplex Distributor has the ability to specify
certain policies within the Policy Agent so that it may use QoS information from
target stacks in addition to WLM server load. Further, these policies can specify
which target stacks are candidates for clients in particular subnetworks.

As with Network Dispatcher, connection requests are directed to the distributed
stack of Sysplex Distributor. The stack selects which target server is the best
candidate to receive an individual request and routes the request to it. It maintains
state so that it can forward data packets associated with this connection to the
correct stack. Additionally, data sent from servers within the sysplex need not travel
through the distributing stack.

Sysplex Distributor also enhances the Dynamic VIPA and Automatic VIPA Takeover
functions introduced in SecureWay® Communications Server for 0S/390 V2R8 IP.
The enhancements allow a DVIPA to move nondisruptively to another stack. That is,
in the past, a DVIPA was only allowed to be active on one single stack in the
sysplex. This led to potential disruptions in service when connections existed on
one stack, yet the intent was to move the DVIPA to another stack. With Sysplex
Distributor, the movement of DVIPAs can now occur without disrupting existing
connections on the original DVIPA owning stack.

Refer to [‘Configuring Distributed DVIPAs — Sysplex Distributor” on page 224 for
more information.

Policy interactions

The Policy Agent interacts with the Sysplex Distributor to assist with workload
balancing. There will be one Policy Agent running on an LPAR regardless of how
many stacks are configured. First, the Policy Agent can be configured to collect
network performance statistics for applications being distributed on target stacks.
These network performance statistics are then used to modify the overall WLM
weight assigned to target stacks. In this way, both processor performance and
application network performance are taken into account when distributing work.
Second, policies established on the distributing stack can be configured to restrict
the set of target stacks to be considered for any given inbound connection request.
In this way, the total set of target stacks can be partitioned among different groups
of users or applications requesting connections to distributed applications.

Previously, the QoS performance data was collected by the Policy Agent on the
target for each DVIPA and port or application. After collecting the QoS information,
the Policy Agent on the target stack pushed this information down to the stack
Sysplex function which then forwarded it to the stack Sysplex function on the
distributing stack. There are two significant additions to Policy Agent and Sysplex
interaction:

* The Policy Agent at each target will collect information with an additional level of
granularity; the QoS performance data will be collected for each service level that
a target’s DVIPA port or application supports.

* The Policy Agent on the distributing stack drives the collection of this information
by pulling it from the Policy Agents on the target stacks:

z/OS V1R4.0 CS: IP Configuration Guide

The Policy Agent on the distributor opens up a TCP connection to each of the
Policy Agents on the target stacks. For more information on how the Sysplex
Distributor determines its targets, refer to [‘Configuring Distributed DVIPAs —|
[Sysplex Distributor” on page 224}

— The Policy Agent on the distributing stack will send across a list of QoS
service level names to the Policy Agent on each target.

— The Policy Agent on each target will send back a QoS Policy Action weight
fraction for each requested service level that each target DVIPA
port/application supports. A specific Policy Action weight fraction will not be
sent unless the distributing stack’s Policy Agent requests it.

— Upon receiving the QoS Policy Action weight fraction, the Policy Agent on the
distributing stack will pass this information down to the Sysplex Distribution
function on the stack. The stack Sysplex Distribution function will use this
additional information when it is selecting targets for incoming connections. If
it does not have a QoS Policy Action weight fraction, then it will use the
existing weight fraction described above to make the load distribution decision
instead.

How to enable Policy Agent load distribution functions:

1.

Define the PolicyPerfMonitorForSDR statement in the PAGENT configuration file
to enable the policy performance monitor function. This function must be active
on the target and distributing stacks.

z/OS CS V1R2 load distribution needs to be specifically enabled for each
service level; a Policy Action with the same service level name needs to be
defined on each of the appropriate target stacks and also on the distributing
stack for these targets. Note that it is reasonable to have a subset of key
service level names defined to the distributing stack. Traffic mapping to those
service level names that are defined to the distributing stack will receive z/OS
CS V1R2 load distribution by service level. All other traffic will receive CS
V2R10 load distribution.

A backup distributing stack must have the same Policy Action configuration
definitions as the active distributing stack for the corresponding DVIPA targets
which it is backing up, if it is desired that the Policy Action behavior stay the
same when the backup distributing stack takes ownership of the DVIPA. It will
also need to have the Policy Agent performance monitor function active.

Common PAGENT port numbers will be used by the listener
(pagentQosListener) and the collector (pagentQosCollector) They are part of the
/etc/services install file. If PAGENT is running on an LPAR containing a target
stack, it will open a listening connection using the pagentQosListener port
number. PAGENT running on an LPAR containing a distributing stack will
establish a TCP connection with each PAGENT listener using the
pagentQosCollector as the source port and the pagentQosListener as the
destination port. The listener will fail a connect request if the source/destination
port does not match the defined collector/listener port. The /etc/services file on
all LPARs in the sysplex must be updated to contain these port numbers.

Define the two port numbers mentioned above as reserved ports for PAGENT
via the PORT statement in the PROFILE.TCPIP data set.

Define the DYNAMICXCF parameter on the IPCONFIG statement in
PROFILE.TCPIP. The PAGENT TCP connections use the XCF IP addresses.

For more information on setting up polices, refer to ['Sysplex distributor polic
rformance monitoring configuration” on page 568} [‘Sysplex Distributor policb

e
example” on page 573, orf‘SyspIex Distributor routing policy example” on page 580,

Chapter 6. TCP/IP in a sysplex 263

264

Connection load balancing using Sysplex Distributor in a
network with CISCO routers

The IBM Sysplex Distributor (SD) function provides a workload balancing function
within a parallel sysplex. The SD consists of a primary distributor stack (denoted by
a Dynamic VIPA) and a set of target stacks. An inbound packet destined for that
DVIPA flows through the primary distributor stack which then forwards the packet
over an internal link (XCF, IUTSAMEH, or IQDIO) to the selected target stack.

The Cisco Multi-Node Load Balancer (MNLB) provides a workload balancing
function which distributes traffic through Cisco routers across multiple destination
TCP/IP stacks. The MNLB consists of a Service Manager (the Cisco Local Director
which is denoted by a cluster IP address) and a set of Forwarding Agents (Cisco
routers). For a TCP connection to the cluster IP address, the Forwarding Agent
sends the SYN packet to the Service Manager, which then selects a target stack
and notifies the Forwarding Agent of this decision. The Forwarding Agent then
sends all future packets for that TCP connection directly to the target stack.

A solution is available to allow the customer to use a combination of the Sysplex
Distributor and the MNLB to provide workload balancing.

The scope of a cluster IP address managed by Sysplex Distributor is still a single
Sysplex, and integration with Cisco forwarding agents merely allows the Sysplex
Distributor routing stack to be bypassed for inbound traffic. If workload balancing for
a single cluster IP address across nodes in multiple clusters (Sysplexes) is desired,
MNLB using Cisco Local Director as the service manager will continue to be used.
Sysplex Distributor will continue to advertise network ownership of the cluster IP
address with any attached routing daemon so that Sysplex Distributor appearance
and behavior toward the attached routing network is unchanged except for its new
relationship with Cisco forwarding agents.

This solution allows the choice of providing the workload distribution inside the
sysplex, outside the sysplex, or a combination of both.

Setting up Sysplex Distributor to be the service manager for

Cisco’s MNLB

1. The Cisco router must be configured as a forwarding agent. The ip casa control
address (which is NOT the interface address to the forwarding agent) must be
advertised by the Cisco routing daemons. This is not automatically done by
Cisco and must be enabled by a Cisco command. For more information on the
commands, refer to Cisco’s online documentation at:
Inttp://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm|

2. Specify the SERVICEMGR keyword on the VIPADEFine statement in the TCPIP
profile.

3. Specify the VIPASMparms statement in the TCPIP profile. Specify the same
multicast group and UDP port on the VIPASMparms statement in the TCPIP
profile as are configured in the MNLB.

4. Optionally, use MD5 authentication:

Specify the same password (MD5 key) on the VIPASMparms statement in the
TCPIP profile as is configured on the Cisco routers which will communicate with
the Sysplex Distributor. If a password is specified, then the Sysplex Distributor
will perform MD5 authentication for all communications with the Cisco
Forwarding Agents. For more information on MD5 authentication, refer to RFC
1321.

5. If using the Cisco MNLB in a configuration where there is an OSA adapter
between a Cisco router and the destination TCP/IP stacks such that multiple

z/OS V1R4.0 CS: IP Configuration Guide

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm

stacks are sharing the OSA, then configure GRE tunnels on the Cisco routers.
Refer to the Cisco router publications located at
[http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm| for more detailed
information.

6. If using the Cisco MNLB in a mixed environment where V2R10 targets exist,
routing must be configured so that the selected route from the R10 target to the
routing stack is not through the Cisco MNLB service manager for this distributed
DVIPA.

7. Special consideration must be made for each target stack that will receive data
from an OSA that is not shared with the distributor stack. Connection load
balanced IP packets routed to target stacks that do not use GRE tunnels will
arrive with a destination address of the dynamic VIPA address. Only the OSA
associated with the distributor stack is aware of the dynamic VIPA address. If
the OSA is not the primary router, it will discard the IP packet. In this case, you
must either configure GRE tunnels on the Cisco router or configure the OSA to
be the default router. For more detailed information about GRE, refer to the
Cisco router publications located at
[http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm| To configure an
OSA in LCS mode as the default router, use OSA/SF. To configure an
OSA-Express in QDIO mode as the default router, specify PRIROUTER on the
DEVICE statement. For more information on the DEVICE statement, refer to
[z20S Communications Server: IP Configuration Referencel

8. Verification:

The Netstat VIPADCFG/-F report may be used to verify the configuration. Refer
to the |zZ0S Communications Server: IP System Administrator’s Commandd for
more information on this command.

Cisco’s show ip casa commands may be used to display MNLB information.
For more detailed information on these commands, refer to Cisco’s online
documentation at:
|http://www.cisco.com/univercd/cc/td/doc/product/software/i0s120/120newft/120t/120t5/ipclus. htm|

Following is a sample VIPADYNAMIC statement:

VIPADYNAMIC
VIPADEFINE MOVEABLE IMMED SERVICEMGR 255.255.255.0 197.11.221.1
VIPASMPARMS SMMCAST 224.0.1.2 SMPORT 1637
VIPADIST 197.11.221.1 PORT 80 20 21 23
DESTIP 199.11.87.104
199.11.87.105
199.11.87.106
199.11.87.108
199.11.87.109
199.11.87.110
ENDVIPADYNAMIC

For more information on the VIPADYNAMIC statement, refer to the
[Communications Server: IP Configuration Reference]

Chapter 6. TCP/IP in a sysplex 2695

http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm

266 2/0S V1R4.0 CS: IP Configuration Guide

Part 2. Server applications

© Copyright IBM Corp. 2000, 2002 267

268 2/0S V1R4.0 CS: IP Configuration Guide

Chapter 7. Network connectivity with an SNA network

The objective of this chapter is to guide you through the steps required to
implement:

» SNALINK LUO

* SNALINK LU6.2
+ X.25 NPSI

*+ NCPROUTE

Before you configure:

Read and understand [Chapter 1, “Configuration overview” on page 3| It covers
important information about data set naming and search sequences.

SNALINK LUO environment

SNALINK allows TCP/IP to send and receive packets using SNA sessions instead
of dedicating physical network hardware (such as a channel-to-channel adapter or
channel connection to a 3745/46 Communication Controller).

Prior to NCP V7R3, NCP did not support cross-channel native IP transmission of
the transport PDUs associated with RIP traffic. NCP expects these PDUs to be
carried in SNA frames. SNALINK is therefore still required for installations where
dynamic routing is performed with the NCP (via NCPROUTE). See
|[Communications Server: IP Configuration Referencelfor more information.

SNALINK allows an installation to multiplex SNA and IP traffic over the same 1/0
subchannels, rather than requiring separate subchannels dedicated to VTAM and
TCP/IP. While such multiplexing capability may be desirable at some installations,
the native TCP/IP CTC and 3745/46 device drivers will likely outperform SNALINK
connections. Interaction with the SNALINK address space is very CPU-intensive,
and is not required with the native TCP/IP CTC and 3745/46 device drivers. (See
the [z/0S Communications Server: IP Configuration Reference for configuration
information.) It is therefore important to weigh the multiplexing capability that
SNALINK provides against its performance cost, in determining whether to use
SNALINK or the native TCP/IP CTC or 3745/46 device drivers.

Understanding the SNALINK environment

The SNALINK environment interfaces between the TCP/IP environment's SNAIUCV
driver and the customer’s SNA network. SNALINK communicates with one or more
instances of SNALINK at remote nodes, using the SNA LU type 0 protocol. See
[Figure 38 on page 270|for a description of the SNALINK environment interfaces.

© Copyright IBM Corp. 2000, 2002 269

MVS MVS

TCPIP #1 TCPIP #2

IUCV IUCV
SNALUO
SNALINK #1 SNALINK #2

SNALUO
VM

SNALINK #3

Iucv

TCPIP #3

Figure 38. SNALINK environment interfaces

Each SNALINK environment can communicate with up to 9999 SNALINKs
simultaneously. The number of connections is determined by the parameters you
pass to the SNALINK cataloged procedure. The default is 6 sessions running in
dual mode for a total of 3 SNALINKSs.

* When operating in single mode, SNALINK opens one full duplex session.

* When operating in dual mode, SNALINK opens two System Network Architecture
(SNA) sessions for each remote logical unit (LU) with which it communicates,
one for sending and one for receiving.

Configuring SNALINK LUO

270

Steps to configure SNALINK LUO:

1. Specify configuration statements in hiq.PROFILE.TCPIP.
2. Update the SNALINK cataloged procedure.

3. Define the SNALINK application to VTAM.

Step 1: Specify configuration statements in hiq.PROFILE.TCPIP
The following sections describe the changes you must make to your TCPIP address
space configuration data set (hiqg.PROFILE.TCPIP).

Defining SNA DLC links: SNA DLC links are point-to-point and require DEVICE
and LINK statements in the configuration data set. The DLC link constitutes a
separate network, even though it includes only two hosts. To define a link, each
host to which the DLC link is attached requires:

* A pair of SNA LUO DEVICE and LINK statements

* A HOME statement

* A BSDROUTINGPARMS or GATEWAY or BEGINROUTES statement

SNA DLC links are defined in one of two ways:

* By unique network or subnetwork numbers, if the hosts to which they connect
are not attached to other networks.

z/OS V1R4.0 CS: IP Configuration Guide

» By the IP address of the hosts to which they connect, if the hosts are attached to

other networks.

You usually have to assign a unique network or subnetwork number to the

SNALINK. If the link connects 2 hosts that also have other networks attached to

them, the DLC link does not need its own subnetwork number. [Figure 39|illustrates

how to define an SNA DLC link if the 2 hosts are connected to other networks in

the following way:

* Host A and Host B are connected by SNA DLC

* Host A is also connected to a token ring, 193.1.1

* Host B is also connected to a token ring, 193.1.2

* Host A's home address on its token ring is 193.1.1.1
* Host B’'s home address on its token ring is 193.1.2.1

HostA

SNA

193.1.1.1

Figure 39. SNA DLC link

HostB

193.1.2.1

Host A's hlqg.PROFILE.TCPIP could contain:

DEVICE LCS1 LCS BAO

LINK TR1 IBMTR 0 LCS1

DEVICE SNALUO SNAIUCV SNALINK LUOGOGOOOO SNALINKA

LINK SNAIUCV1 SAMEHOST 1 SNALUO

HOME
193.1.1.1 TR1
193.1.1.2 SNAIUCV1

GATEWAY

3 Network First hop Link Packet size Subnet mask
193.1.1.0 = TR1 2000 0
193.1.2.0 = SNATUCV1 2000 0

Host B’s hiq.PROFILE.TCPIP could contain:

DEVICE LCS2 LCS BEO

LINK TR1 IBMTR 0 LCS2

DEVICE SNALUO SNAIUCV SNALINK LU0GOOOO1 SNALINKA

LINK SNAIUCV1 SAMEHOST 1 SNALUO

HOME
193.1.2.1 TR1
193.1.2.2 SNAIUCV1

GATEWAY

; Network First hop Link Packet size Subnet mask
193.1.2.0 = TR1 2000 0
193.1.1.0 = SNAIUCV1 2000 0

Chapter 7. Network connectivity with an SNA network

271

Notes:

1. The lu_name must be different on each host. In the example, the lu_name for
Host A is LU000000. The /u_name for Host B is LUO000O01.

2. In the example, the lu_name is the remote or partner LU.

Hosts A and B are addressed by their token-ring home addresses, even if the
packets reach them through the SNA DLC link.

If Host B had no other network attached to it, you would have to assign a separate
subnetwork number to the SNA DLC link. Even in this case, Host A does not need a
separate home address for its SNA link, because it can be addressed by its
token-ring home address. Host B’s only home address is the home address for the
SNA link.

Note: If you plan to run a network-monitoring protocol that requires each subnet to
have its own subnet number, you can assign a separate subnet network
number to the DLC link.

Defining NCPROUTE and 3745 LAN attachments: |f your TCP/IP configuration
supports NCPROUTE or 3745 Communications Controller Ethernet or token-ring
links, you must do the following:
* Match the /u_name on the DEVICE statement to the LU statement in NCST
section of your NCP generation.
The following example shows the LU name A04TOLU1 defined in the
hlg.PROFILE.TCPIP DEVICE statements and in the NCP generation.

DEVICE SNAILINK SNAIUCV SNALINK AOQ4TOLU1 SNALISTC
LINK SNALINK SAMEHOST 1 SNAILINK

HOME
9.67.116.66 SNALINK

GATEWAY

s Network First hop Link Packet size Subnet mask
9.67.116.65 = SNALINK 2000 HOST

START SNAILINK

St oo o e e e ko

* NCST IP INTERFACES**

B s

AO4ANCSTG GROUP NCST=IP,LNCTL=SDLC,VIRTUAL=YES

AQANCSTL LINE LINEFVT=CXSXFVT,PUFVT=CXSXFVT,LUFVT=(CXSXFVT,CXSXFVT),LIN=*
ECB=CXSXLNK

AO4NCSTP PU VPACING=0,PUTYPE=2,PUCB=CXSPO00OS

*

AO4TOLU1 LU INTFACE=(NCSTALU1,1492),REMLU=SNALKLU1,LUCB=(CXSXLOOOO,CXSSO*
000),LOCADDR=1

kkkkkhkkhkkkhhkkkhhkkkhhkkhkhkkhhkkhhkkhhkhkhkkhhkkhhkhkhhkhkhhkkhhhkkhhkhkkhhkhkhhkkhhkkhhkkhkkhkkhhkkhkhkkhkkkhkkk*x

* Match the remote LU name SNALKLU1 in the NCP generation to the APPLID in
the SNALINK cataloged procedure parameters and in the VTAM APPL definition.
//SNALINK PROC MODULE=SNALINK,TCPID='TCPV3',APPLID="SNALKLU1'

//SNALINK EXEC PGM=&MODULE<REGION=$4096K,TIME=1440,
PARM="'&TCPID &APPLID C7 6 0003 SINGLE'

For additional information on configuring these links, see|z/0S Communications
[Server: IP Configuration Referenc

272 2/0S V1R4.0 CS: IP Configuration Guide

Step 2: Update the SNALINK cataloged procedure
Update the SNALINK cataloged procedure by copying the sample in

SEZAINST(SNALPROC) to your system or recognized PROCLIB and modifying it to
suit your local conditions. Specify SNALINK parameters and change the DD
statements, as required. Refer to|zZOS Communications Server: IP Configuration|
for more information about the SNALINK cataloged procedure.

Step 3: Define the SNALINK application to VTAM

In dual mode, SNALINK opens 2 SNA sessions for each remote logical unit with
which it communicates: one for sending and one for receiving. In single mode,
SNALINK opens one full-duplex session.

Figure 40|is an example of a typical VTAM APPL statement for SNALINK. The
application identifier (SNALKBOS in this example) must match the APPLID specified
in the SNALINK cataloged procedure parameters.

SNALKBO3 APPL ACBNAME=SNALKBO3,
AUTH=(ACQ, VPACE),
SRBEXIT=YES,
EAS=12,
PARSESS=YES,
SONSCIP=YES,
VPACING=0

><X XX XX X X X

Figure 40. APPL statement for SNALINK

Note: SRBEXIT must be YES.

Refer to [z/0S Communications Server: SNA Resource Definition Reference more
information about defining VTAM applications.

VTAM considerations:
» Each connection requires 100KB of virtual storage.

* SNALINK provides its own BIND parameters, so it does not assume or require
any particular LOGMODE entries.

* The EAS value should be two times the number of maximum sessions passed to
the SNALINK cataloged procedure.

+ SRBEXIT=YES.

* You might have to specify pacing values (VPACING). Consult your VTAM
network administrator for further details.

* For max_ru_size, be sure to consider the size of the TH, RH, and RU portions. If
the maximum size PIU exceeds MAXRU, the NCP issues a negative response
with sense 800A0000 (PIU too long). The definition used in NCP and SNALINK
must be such that MAXRU is at least 29 bytes less than MAXDATA. Refer to
[z20S Communications Server: SNA Network Implementation Guidd for more
information on defining the MAXDATA, MAXBFRU, and UNITSZ operands.

Stopping and starting SNALINK

If necessary, you can immediately retry a session that is waiting for the retry delay
to expire by stopping and starting the SNALINK LUO interface.

To stop SNALINK and close all connections, use the STOP command on the
operator’s console. For example, if SNALPROC was the name of the cataloged
procedure used to start SNALINK, you enter:

STOP SNALPROC

Chapter 7. Network connectivity with an SNA network 273

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

O O0ONOOOT P~ WN -

SNALKCO4
SNALKCO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKCO4
SNALKCO4
SNALKCO4
SNALKCO4
SNALKCO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKAO4
SNALKCO4
SNALKCO4
SNALKCO4
SNALKCO4
SNALKCO4

You can also stop SNALINK with the HALT parameter on the MODIFY command.
See [‘Controlling the SNALINK LUO interface with the MODIFY command” on|

|page 27§[

SNALINK can be started by:

* Restarting the TCPIP address space if you have included the SNALINK
procedure in the AUTOLOG statement in the hig.PROFILE.TCPIP data set.

* Issuing START procname at the command console (where procname is the name
of the cataloged procedure used to start the SNALINK LUO interface).

For example, to restart SNALPROC, enter
START SNALPROC

Sample console
The example in|Figure 41| and the accompanying information illustrate SNALINK

operation.

The line number notations in the example have been added for clarity. They do not
appear in the console output.

Init complete, APPLID SNALKBO3, TCPIP id TCPIPB

Maximum RU size is 00000600

DLC path 00000001 pending

Ready to accept bind from remote LU

DLC path 00000002 pending

Sending BIND request for SNA send session

OPNDST CHECK err. R15 00000004 RO 00000010 RTNCD 00000010 FDBK2 00000000
OPNDST sense: SSENSEI,SSENSMI,USENSEI: 00000000

DLC path 00000002 pending

Sending BIND request for SNA send session

OPNDST ~ CHECK err. R15 00000004 RO 00000010 RTNCD 00000010 FDBK2 00000000
OPNDST sense: SSENSEI,SSENSMI,USENSEI: 00000000

Received BIND request for SNA receive session

Sending BIND request for SNA send session

SNA receive session established

SNA send session established

Accepting DLC path 00000001

DLC path 00000002 pending

Sending BIND request for SNA send session

SNA send session established

Accepting DLC path 00000002

Received BIND request for SNA receive session

SNA receive session established

NSEXIT CLEANUP request for receive session

RECEIVE CHECK err. R15 00000004 RO 0000000C RTNCD 0000000C FDBK2 0000000B
RECEIVE sense: SSENSEI,SSENSMI,USENSEI: 00000000

DLC path 00000001 pending

Ready to accept bind from remote LU

STOP SNALINK

| Received STOP command, shutting down

Figure 41. SNALINK console example

274

Line number Description

Lines 1 and 2 SNALINK displays its startup information from its
command line parameters, which are customized as
described in [z70S Communications Server: IR
[Configuration Referencel The maximum RU size
and all other values are displayed in hexadecimal.

z/OS V1R4.0 CS: IP Configuration Guide

Lines 3 and 4

Lines 5 and 6

Lines 7 and 8

Lines 9 through 12

Lines 13 and 14

Lines 15 through 17

Lines 18 through 23

Lines 24 through 26

Lines 27 and 28

Lines 29 and 30

The TCPIP address space, TCPIPB, issues a DLC
CONNECT to establish a session with the remote
LU SNALKCO04. SNALKCO04 is higher in the
collating sequence than the local LU name
SNALKBO03. Consequently, SNALKBO3 takes the
passive role in connecting to SNALKCO04, and waits
for SNALKCO04 to establish a session.

TCP/IP issues another DLC CONNECT to establish
a session with SNALKAO4. In this case, SNALKA04
is lower in the collating sequence. Consequently,
SNALKBO3 takes an active role in connecting to
SNALKAO4.

The session establishment attempt to SNALKAO4
has failed, as indicated by the (nonzero) return
code and the sense information printed.

Thirty seconds later, TCP/IP again tries to connect
to SNALKAO4.

SNALINK receives a BIND request from
SNALKCO04. SNALINK calls the resulting session
the receive session, because it is used only to send
data from SNALKCO04. Now that the active end has
initiated communication, SNALKBO03 as the passive
end, sends a BIND request to establish a send
session.

The send and receive sessions are fully
established. Establishment of the send session
causes SNALINK to accept the corresponding DLC
path.

TCP/IP again tries to connect to SNALKAQ4. This
time it is successful (success is indicated by no
nonzero return codes).

SNALKCO04 terminates its sessions, and various
error messages result.

Thirty seconds later, TCP/IP again tries to establish
communication with SNALKCO04. As in lines 13 and
14, SNALKBO3 is the passive partner.

The operator issues a STOP SNALINK command,
which causes SNALINK to stop. All DLC paths and
SNA sessions are ended.

Verifying connection status using NETSTAT DEVLINKS

The DLC connect protocol between TCP/IP and SNALINK causes the status of the
SNAIUCYV device, reported by NETSTAT DEVLINKS, to reflect the status of the
SNA sessions to the remote LU. Refer to|z/OS Communications Server: IP System|

|Administrator's Commands| for more information on the NETSTAT command.

Controlling the SNALINK LUO interface with the MODIFY command

Both of the following commands would pass parameters to a SNALINK LUO
address space started with a procedure named SNLK12. TCPSETUP.

Chapter 7. Network connectivity with an SNA network 275

MODIFY SNLK12.TCPSETUP,HALT

F SNLK12.TCPSETUP,PKTTRACE CLEAR *

TCP/IP for MVS allows the configuration of multiple DLC links to the SNALINK LUO,
LUB.2, and X.25 NPSI server address spaces. The PKTTRACE parameter supports
this capability through the LINKNAME parameter. Multiple PKTTRACE parameters
can be issued to define the scope of the tracing by identifying the tracing options
applicable to multiple links.

PKTTRACE considerations:

» Parsing of the parameter halts as soon as an error is detected and the parameter
is ignored.

» Parameters can appear in any order.

» The occurrence of a parameter more than once is an error. In the case of the
special parameters ON, OFF, CLEAR, and LIST, the occurrence of more than
one of these parameters is an error.

* The PKTTRACE parameter must be issued after the corresponding DLC
connection has been accepted from TCPIP.

» Each defined link will have an associated trace profile. The trace profile stores
the effective values of each of the trace options for the link. When created or
reset using the CLEAR parameter, a link’s trace profile is set to the default
values for the trace parameters as follows:

DESTPORT
No checking
FULL Tracing of the whole IP packet
IP All IP addresses (*)
PROT All protocols (*)
SRCPORT
No checking
SUBNET
No checking

* Multiple statements can refer to the same link either by explicitly naming the link
or by defaulting to an asterisk (*), which indicates all links. When multiple
statements refer to the same link, the parameters on the statements are
cumulative, and parameters not specified on the second and subsequent
statements are not changed. If a parameter is specified on one statement and
then appears on a subsequent statement, the value associated with the last
occurrence of the option is used because this is the value that is stored in the
trace.

SNALINK LU6.2

The SNALINK LU6.2 cataloged procedure runs a VTAM application program called
SNALNK®62, which is an interface between the TCPIP address space and the SNA
network. SNALNK62 uses SNA LU type 6.2 sessions to pass the TCP/IP data to or
from SNALNKG62 devices running on other hosts. Examples of SNALNK62 devices
include an OS/2 workstation running TCP/IP for OS/2 or a host running TCP/IP for
MVS.

Configuring SNALINK LU6.2
Steps to configure SNALINK LU6.2:
1. Specify DEVICE and LINK statements in hlq.PROFILE.TCPIP.
2. Update the SNALINK LU6.2 cataloged procedure.

276 2/0S V1R4.0 CS: IP Configuration Guide

3. Define the SNALINK LU6.2 application to VTAM.
4. Update the SNALINK LU6.2 configuration data set.

Step 1: Specify DEVICE and LINK statements in
hlq.PROFILE.TCPIP

You must update the hlq.PROFILE.TCPIP data set to include a DEVICE and LINK
statement for each DLC connection to be established between the main TCPIP
address space and the SNALINK LU6.2 address space.

Step 2: Update the SNALINK LU6.2 cataloged procedure

Update the SNALINK LU6.2 cataloged procedure by copying the sample in
SEZAINST(LU62PROC) to your system or recognized PROCLIB and modifying it to
suit your local conditions. No system parameters are required for the SNALINK
LU6.2 address space.

The DD statements in the cataloged procedure should be defined as follows:

DD Name Description

SYSTCPD TCPIP.DATA configuration data set
LU62CFG SNALINK LU6.2 configuration data set
SYSPRINT Runtime diagnostic or trace output
SYSUDUMP User abend dump output (optional)

Refer to ['‘Resolver configuration files” on page 27| for information on data set search
sequences.

Step 3: Define the SNALINK LU6.2 application to VTAM

SNALINK LU6.2 opens two SNA LU type 6.2 sessions with each destination node;
one for sending and one for receiving. If a destination node supports parallel SNA
LU type 6.2 sessions (PARSESS=YES), the two sessions use the same remote
logical unit; otherwise, two remote logical units are used. In either case, SNALINK
LUB.2 uses a single local logical unit that must support parallel sessions.

The SNALINK LU6.2 address space must be defined to VTAM as an SNA LU type
6.2 application program. The following APPL statement defines a SNALINK LU6.2
application to VTAM.

LU62APPL APPL ACBNAME=LU62APPL,
PRTCT=QWERTY,
AUTH=(ACQ, VPACE),
SRBEXIT=NO,
EAS=12,
PARSESS=YES,
SONSCIP=YES,
APPC=YES,
DLOGMOD=LU62MODE,
VPACING=0

* Ok X X X ok 3k X X

Figure 42. APPL statement for SNALINK LU6.2

Note: SRBEXIT must be NO.

See [z/0S Communications Server: SNA Resource Definition Referencelfor further
information about defining VTAM applications.

The LOGMODE table entry specified by the APPL DLOGMOD parameter should
have the following form:

Chapter 7. Network connectivity with an SNA network 277

LU62MODE MODEENT LOGMODE=LU62MODE,FMPROF=X'13"',TSPROF=X'07", *
PRIPROT=X'BO',SECPROT=X'BO',COMPROT=X"'D0OB1", *
RUSIZES=X'8585"',ENCR=B'0000", *
PSERVIC=X'060200000000000000000300"

See |z/OS Communications Server: SNA Customization| for more information about
defining log mode tables and [zZOS Communications Server: SNA Programming for
information on PSERVIC values.

Step 4: Update the SNALINK LU6.2 configuration data set
Customize the SNALINK LU6.2 configuration data set by copying the sample

provided in SEZA.INST(LU62CFQG) to your system or recognized PROCLIB and
modifying it to suit your local conditions. Add or change the configuration
statements as required. Be sure the /LU62CFG statement in the cataloged
procedure points to this data set. Refer to [zZ0S Communications Server: IP]
[Configuration Reference for more information about parameters.

Sample console

The example in shows the messages that are expected when the
SNALINK LU6.2 address space is started and a network connection is established.

S SNAL621A

$HASP100 SNAL621A ON STCINRDR

$HASP373 SNAL621A STARTED

I8 TEF4031 SNAL621A - STARTED - TIME=15.26.03

r4 EZA59271 LU62CFG : NO ERRORS DETECTED - INITIALIZATION WILL CONTINUE
k) EZA59321 INITIALIZATION COMPLETE - APPLID: SNAL621A TCP/IP: TCPCS

LY EZA59351 SEND CONVERSATION ALLOCATED FOR 9.67.22.2

() EZA59331 LINK SNALU62L OPENED

EZ743131 INITIALIZATION COMPLETE FOR DEVICE SNALU621

A EZA59361 RECEIVE CONVERSATION ALLOCATED FOR 9.67.22.2

Figure 43. Sample MV'S system console messages on SNALINK LU6.2 address space
startup

The following list explains the MVS system console messages on SNALINK LU6.2
address space startup as shown in [Figure 43.
The SNAL621A address space has been started.

The SNALINK LU6.2 configuration data set for the SNAL621A address
space has been successfully parsed.

The SNAL621A address space displays its local VTAM application LU and
the TCP/IP address space name to which it will connect.

The SNAL621A address space establishes a network connection through
the VTAM API.

O 0 B D@

The SNAL621A address space establishes a DLC connection with its
TCP/IP address space.

X.25 NCP Packet Switching Interface (NPSI)

The X.25 NPSI server runs a VTAM application program called XNX25IPI, which is
the interface between the TCPIP address space’s DLC driver and your X.25
network. XNX25IPI communicates with the X.25 NCP Packet Switching Interface in
a front-end IBM 37xx Communications Controller.

278 2/0S V1R4.0 CS: IP Configuration Guide

Large scale X.25 network applications often require multiple physical lines to the
network switch for increased capacity and reliability. You can configure the X.25
NPSI server to support multiple lines as a group, rather than individually. In this
configuration, the collection of lines is assigned a single address called a hunt
group address. Incoming X.25 calls are distributed among the lines in either rotary
or traffic balancing fashion, depending on the services offered by the X.25 network
provider.

For information about improving the performance of the X.25 NPSI network, see the
options on the PORT statement and GATEWAY statement in the
hlq.PROFILE.TCPIP and the explanation provided in the TCP/IP: Performance
Tuning Guide.

Configuring X.25 NPSI

This section describes how to configure the X.25 NPSI server.

Steps to configure the X.25 NPSI server:

Specify X.25 configuration statements in hlq.PROFILE.TCPIP.
Update the X.25 NPSI cataloged procedure.

Update the X.25 NPSI server configuration data set.

Define the X.25 NPSI configuration.

Define the X.25 NPSI application to VTAM.

Define VTAM Switched Circuits.

I A

If you want to run the X.25 NPSI cataloged procedure in a different domain than the
X.25 NPSI communication controller, see|z/0S Communications Server: IA
[Configuration Reference,

For information about operating the X.25 NPSI server with the MODIFY command,
see [z/0S Communications Server: IP Configuration Reference

Step 1: Specify X.25 configuration statements in
hlq.PROFILE.TCPIP

To configure the hlq.PROFILE.TCPIP data set for X.25 NPSI, include appropriate
DEVICE, LINK, HOME, GATEWAY, and START statements. The following example
shows the statements that would correspond with the other X.25 samples in this
chapter.

DEVICE X25DEV X25NPSI TCPIPX25
LINK X25LINK SAMEHOST 1 X25DEV
HOME

199.005.058.23 X25LINK

GATEWAY

5 Network First hop Link name Packet size Subnet mask Subnet value
192.005 = X25LINK 2000 0.0.255.0 0.0.58.0

START X25DEV

B

Note: Only one DEVICE and LINK statement per TCPIPX25 address space is
allowed.

Chapter 7. Network connectivity with an SNA network 279

280

Step 2: Update the X.25 NPSI cataloged procedure
Update the X.25 NPSI cataloged procedure by copying the sample provided in

SEZAINST(X25PROC) to your system or recognized PROCLIB and modifying it to
suit your local conditions.

Change the data set names as needed:

* Refer to r‘ResoIver configuration files” on page 27| for data set search sequence
information.

* Modify the //X25IPI DD statement to point to your X.25 configuration data set.

Step 3: Update the X.25 NPSI server configuration data set

A sample configuration data set provided in SEZAINST(X25CONF) gives examples
of how to define a public network connection, a Defense Data Network connection,
and private point-to-point connection to a router. Copy this sample to the data set
pointed to by the //X25IP| DD statement in your X.25 NPSI cataloged procedure.
Update this sample to define your X.25 connections using the statements listed in
the [z/0S Communications Server: IP Configuration Reference

Each connection must have a LINK and at least one DEST statement. You can
optionally define hunt groups, fast connects, and call handling options for each link,
and global options such as trace levels, when to clear inactive connections, and the
buffer size to use for IP datagrams. You can find complete syntax for each of these
statements in |zZ0S Communications Server: IP Configuration Referencd.

Step 4: Define the X.25 NPSI configuration

Define the X.25 NPSI configuration according to the information in X.25 NPSI/
Planning and Installation. The X.25 NPSI server supports use of the LOGAPPL
operand on the X25.MCH definition in the X.25 NPSI configuration to allow
automatic recovery. You can use either the Generalized Access to X.25 Transport
Extension (GATE) or Dedicated Access to X.25 Transport Extension (DATE).

IBM recommends using the X.25 NPSI GATE configuration which allows sharing of
an X.25 physical link and provides better error recovery. A sample is provided in
SEZAINST(NPSIGATE). NPSI GATE requires that you include the OPTIONS GATE
statement in the X.25 NPSI configuration data set after the LINK statement, as
shown in this portion of the X25CONF sample:

*

* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
% caeececeoeses eceeoeos coosaoesasaseoooosmes - ---- -

Link Xuo24 PRIV 1 2 1024 2
Options GATE

*

* IP address X.25 DTE addr C.U.D.

| e eaeeecccccccesm.s aseos s e s s s - e -

Dest 192.5.57.2 2

Sites that need to use the X.25 NPSI DATE configuration can find a sample in PV
SEZAINST(NPSIDATE). See X.25 NPSI Host Programming for information about
the definitions and parameters used in these configurations.

The following example shows portions of the sample NPSI GATE configuration
(NPSIGATE). Ellipses (....) indicate code that has been omitted.

B R S R R R S R

OPTIONS NEWDEFN=YES,USERGEN=X25NPSI

B e R R R R R R R R R R R R R R R R R R R T R R S

z/OS V1R4.0 CS: IP Configuration Guide

NPSIV32 BUILD ADDSESS=400,
AUXADDR=800,
ERLIMIT=16,
NAMTAB=120,
MAXSESS=250,
USGTIER=5,
BRANCH=8000,
BFRS=104, BUFFER SIZE TO BE GENED
CATRACE=(YES,255), CHAN.ADAPTER TRACE OPTION
CSMSG=C3D9C9E340E2CIE340D4C5E2E2C1C7C540C6D6DI40E2E24040+
40C2C340E3C5D9D4CID5C1D3,

+ + + + + + + o+ +

CWALL=26,

ENABLT0=30.0,

ERASE=YES,

LOADLIB=NCPLOAD, TARGET OF FINAL LINKEDIT
LTRACE=8, LINES TRACED SIMULTANEOUSLY
MAXSSCP=8, NUMBER OF CONCURRENT SSCP'S

MODEL=3745,

VERSION=V5R2.1,

NEWNAME=NPSITCP, NAME OF NCP LOAD MODULE

NUMHSAS=8, HOST SA IN CONCURRENT COMMUNICATION
OLT=YES, ONLINE TERMINAL TEST

PWROFF=YES,

BACKUP=500,

SALIMIT=511,

SLODOWN=12, BUFFER SLOWDOWN THRESHOLD (PERCENT)
SUBAREA=03,

TRACE=(YES,100), ADDRESS TRACE OPTION IN CORE TABLE
TYPGEN=NCP,

TYPSYS=MVS, NCP TO BE GENERATED ON MVS
TWXID=(E8D6E4C3C1D3D311,C2C9C7D5C3D7C3C1D3D325),
VRPOOL=30,

TRANSFR=32,
NETID=NETA,
X25.USGTIER=5,
X25.IDNUMH=01,
X25.MCHCNT=4,
X25.MAXPIU=64K

B i Tt T S T S S S S S S S S I T T T T T T T

e ok ook ko ke ko oo ko ko koo ko ko ke ok ko ek ke ok ko
*
* NPSI DEFINITIONS
*
St o oo o oo e ko ook e ok e e ek e o
X25XXX X25.NET CPHINDX=1, +
NETTYPE=1, +
DM=YES, +
OUHINDX=1
X25.VCCPT INDEX=1, +
MAXPKTL=128, +
VWINDOW=2
X25.0UFT INDEX=1

HGRPO1A X25.MCH ADDRESS=21,
FRMLGTH=131, 128 byte packet + 3 byte header
PKTMODL=8,
ANS=CONT,
LCGDEF=(0,16), 16 logical channels in group 0
MWINDOW=2,
STATION=DTE,
SPEED=9600,
LCNO=NOTUSED,
GATE=GENERAL, GATE
LLCLIST=(LLC4),

+ 4+ + + + ++++ o+ o+

Chapter 7. Network connectivity with an SNA network 281

CONNECT=YES,
LOGAPPL=TCPIPX25,
DBIT=NO,
DIRECT=NO,
SUBADDR=NO
X25.LCG LCGN=0
X25.VC LCN=(1,16),
MAXDATA=1034,
TYPE=SWITCHED,
CALL=INOUT,
OUFINDX=1,
VCCINDX=1

HGRPO1B X25.MCH ADDRESS=22,
FRMLGTH=131,
PKTMODL=8,
ANS=CONT,
LCGDEF=(0,16),
MWINDOW=2,
STATION=DTE,
SPEED=9600,
LCNO=NOTUSED,
GATE=GENERAL,
LLCLIST=(LLC4),
CONNECT=YES,
LOGAPPL=TCPIPX25,
DBIT=NO,
DIRECT=NO,
SUBADDR=NO

X25.LCG LCGN=0

X25.VC LCN=(1,16),
MAXDATA=1034,
TYPE=SWITCHED,
CALL=INOUT,
OUFINDX=1,
VCCINDX=1

X25.MCH ADDRESS=23,
FRMLGTH=131,
PKTMODL=8,
ANS=CONT,
LCGDEF=(0,16),
MWINDOW=2,
STATION=DTE,
SPEED=9600,
LCNO=NOTUSED,
GATE=GENERAL,
LLCLIST=(LLC4),
LOGAPPL=TCPIPX25,
CTCP=(00),
Cuboe=(cc),
DBIT=NO,
DIRECT=NO,
SUBADDR=NO

X25.LCG LCGN=0

X25.VC LCN=(1,16),
TYPE=SWITCHED,
CALL=INOUT,
OUFINDX=1,
VCCINDX=1

z/OS V1R4.0 CS: IP Configuration Guide

Fast connect

MAXDATA only with Fast connect!

128 byte packet + 3 byte header

16 Togical channels in group 0

GATE

Fast connect

MAXDATA only with Fast connect!

128 byte packet + 3 byte header

16 logical channels in group 0

GATE

paired with CUD Tist
incoming CUD selects CTCP

+ + + +

+ 4+ o+ o+ o+ o+ o+ + + + + + + 4+ o+ o+ o+ o+ o+ + + + + +

+ + + +

DCEO1 X25.MCH ADDRESS=24, 1024 byte packet + 3 byte header +
FRMLGTH=1027, +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,2), +
MWINDOW=2, +
STATION=DCE, +
SPEED=9600, +
LCNO=NOTUSED, +
GATE=GENERAL, +
LLCLIST=(LLC4), +
CTCP=(00), paired with CUD Tist +
Cube=(cc), incoming CUD selects CTCP +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NOQ
X25.LCG LCGN=0
X25.VC LCN=(1,2),
TYPE=SWITCHED,
CALL=INOUT,
OUFINDX=1,
VCCINDX=1
X25.END

B e e e R R R R R R R R R R R

+ + + +

GENEND ~ GENEND

Step 5: Define the X.25 NPSI application to VTAM
Define the X.25 NPSI VTAM application with an APPL statement in VTAMLST.
Following is an example of a VTAM APPL statement for X.25 NPSI.
VBUILD TYPE=APPL
TCPIPX25 APPL ACBNAME=TCPIPX25,
PRTCT=TCPX25,
AUTH=(ACQ) ,
PARSESS=YES,
EAS=20

Step 6: Define VTAM switched circuits

X.25 NPSI switched virtual circuits (SVCs) appear to VTAM as switched links, '
requiring a switched circuit definition of a physical unit (PU) and logical unit (LU) for
each SVC. The sample provided in SEZAINST(X25VSVC) shows the definitions of
a VTAM switched circuit corresponding to the sample X.25 NPSI GATE
configuration.

+ + + + +

The definitions are associated with the SVCs by identifying numbers (IDNUMs)
created automatically during X.25 NPSI generation. The entries, in hexadecimal, run
in steps of 2, by default, in the opposite order of the MCH and SVC definitions in
the X.25 NPSI configuration.

Notes:

1. Permanent virtual circuits (PVCs) are not supported.

2. If you specify a local version of the z/OS UNIX table with the SSCPFM operand,
the table must not have an entry for message 10 (the welcome message);
otherwise, the X.25 NPSI server does not operate correctly.

Following is a sample SVC configuration data set (X25VSVC):

1. Except when using fast connect, where they appear as leased lines to VTAM. For more information, see|z/0OS Communicationd
|Server: IP Configuration Reference)

Chapter 7. Network connectivity with an SNA network 283

VBUILD TYPE=SWNET,MAXGRP=1,MAXNO=1

VP023001 PU ADDR=23,IDBLK=003, IDNUM=01024,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VLO23001 LU LOCADDR=0

VP023002 PU ADDR=23,IDBLK=003, IDNUM=01022,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023002 LU LOCADDR=0

VP023003 PU ADDR=23,IDBLK=003, IDNUM=01020,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023003 LU LOCADDR=0

VP023004 PU ADDR=23,IDBLK=003, IDNUM=0101E,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023004 LU LOCADDR=0

VP023005 PU ADDR=23,IDBLK=003, IDNUM=0101C,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VLO23005 LU LOCADDR=0

VP023006 PU ADDR=23,IDBLK=003, IDNUM=0101A,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023006 LU LOCADDR=0

VP023007 PU ADDR=23,IDBLK=003,IDNUM=01018,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023007 LU LOCADDR=0

VP023008 PU ADDR=23,IDBLK=003, IDNUM=01016,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VLO23008 LU LOCADDR=0

VP023009 PU ADDR=23,IDBLK=003, IDNUM=01014,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023009 LU LOCADDR=0

VP023010 PU ADDR=23,IDBLK=003,IDNUM=01012,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023010 LU LOCADDR=0

VP023011 PU ADDR=23,IDBLK=003, IDNUM=01010,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VLO23011 LU LOCADDR=0

VP023012 PU ADDR=23,IDBLK=003, IDNUM=0100E,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VLO23012 LU LOCADDR=0

VP023013 PU ADDR=23,IDBLK=003, IDNUM=0100C,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023013 LU LOCADDR=0

VP023014 PU ADDR=23,IDBLK=003, IDNUM=0100A,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VL023014 LU LOCADDR=0

VP023015 PU ADDR=23,IDBLK=003, IDNUM=01008,
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1,
SSCPFM=USSNTO

VLO23015 LU LOCADDR=0

VP023016 PU ADDR=23,IDBLK=003, IDNUM=01006,

284 2/0S V1R4.0 CS: IP Configuration Guide

DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO
VLO23016 LU LOCADDR=0

K o - *
* Switched circuits for private 1ine 024 (2 VCs, IDNUMS 002-004) *
K o - — *
VP024001 PU ADDR=24,1DBLK=003, IDNUM=01004, +

DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1, +

SSCPFM=USSNTO

VLO24001 LU LOCADDR=0

VP024002 PU ADDR=24,IDBLK=003, IDNUM=01002, +
DISCNT=(YES,F) ,MAXDATA=1034 ,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VLO24002 LU LOCADDR=0

NCPROUTE

NCPROUTE is a server that provides an alternative to using the Network Control
Program (NCP) as a static host-independent IP router. NCPROUTE has the
following effects:

* NCP becomes an active RIP router on a TCP/IP network.

* NCP becomes responsive to SNMP route table queries.

Notes:
1. NCPROUTE requires NCP V7R1, or later.
2. NCPROUTE requires SNALINK LUO when using NCP V7R3 or previous.

3. SNALINK and IP over CDLC is supported for ESCON®, BCCA, and CADS
channels.

4. |P over CDLC can be used instead of SNALINK when using NCP V7R4, or
later.

5. If using RIP Version 2, NCPROUTE requires NCP V7R, or later. Also, the NCP
generation definition must have VSUBNETS=YES specified on the BUILD
statement.

6. NCP versions V6R1 and V6R2 support static IP routing only. NCP uses these
static route tables to deliver datagrams over connected TCP/IP networks. NCP
V7R1 can be specified only as a host-dependent router and it requires the
NCPROUTE server to function as a RIP router.

7. If using NCPROUTE with SNALINK, IP over CDLC channels, and OROUTED,
you should customize the NCST interface metric on the NCP client side for the
SNALINK NCST connection so the routes will be less preferred. This causes
RouteD to prefer routes from the IP over CDLC interface over the ones from the
SNALINK interface. To customize the interface metric, see the interface metric
option in [‘Step 8: Configure the NCPROUTE gateways data set (Optional)” on|
|page 300} Do the same for the SNALINK interface on the MVS host side by
customizing the metric in the BSDROUTINGPARMS statement. RIP traffic will
be carried over the IP over CDLC interface, while transport PDUs (for example,
Hello, Add Route Request, Delete Route Request) will be carried over the
SNALINK interface.

8. NCPROUTE does not support zero subnets.

NCPROUTE provides dynamic route table updates for one or more NCP clients that
have been generated as IP routers and have NCPROUTE specified as the
NCPROUTE server. NCPROUTE tables are updated periodically in the NCP client
based on updates sent by the NCPROUTE server. These updates reflect dynamic
changes in route states.

Chapter 7. Network connectivity with an SNA network 285

An NCPROUTE server at the host uses the Routing Information Protocol (RIP),
described in RFC 1058 (RIP version 1) and in RFC 1723 (RIP version 2). The same
routing protocols are used by the OROUTED server. NCPROUTE is implemented
as a RIP server operating on an MVS host connected to a RIP client in the NCP.
Together they provide the appearance to the TCP/IP network of an IP router using
the RIP protocol. The same client/server pair also provides SNMP agent support for
network management route table queries. RIP Versions 1 and 2 are currently
supported by NCPROUTE. For a brief description of RIP (Versions 1 and 2), see
[Chapter 4, “Routing” on page 155}

Understanding the NCPROUTE environment

The NCPROUTE server:

» Supports multiple host-attached, link-attached, and remote link-attached NCP
clients as illustrated in

* Generates RIP datagrams for the NCP to send

* Maintains separate routing tables for each NCP client

* Generates SNMP route table responses for each NCP SNMP agent

The client NCP unit appears as an active router to other RIP routers on the
network. Multiple NCP clients can connect to the same NCPROUTE server. Each
NCP appears as an IP router to the rest of the network. Each NCP client must have
one or more LUO sessions established with SNALINK. One LUO session per client
is used as the primary session, with the remaining sessions serving as backups.

illustrates the different ways the NCPROUTE server can support NCP
clients. NCP3 and NCP4 are host-attached NCP clients, NCP5 and NCP6 are
link-attached NCP clients, and NCP1 and NCP2 are remote link-attached NCP
clients.

MVS
NCPROUTE
e |
|Ncp1| |NCP2| INCP3| INCP4|

Figure 44. NCPROUTE environment

286 2/0S V1R4.0 CS: IP Configuration Guide

Server requirements
NCPROUTE processes RIP and SNMP datagrams addressed to all attached NCP

units, generates datagrams for the NCP units, and maintains the state of each NCP
unit’s routing tables.

SNMP support is limited to route table queries. Queries are made to the NCP, which
sends the request to the NCPROUTE server for processing.

NCPROUTE operation

An NCP’s IPOWNER statement defines the controlling host and the interface this
NCP client must use to reach the host. The NCP client initiates contact with
NCPROUTE by sending a datagram, known as a “Hello” message, to the controlling
host. It transmits this datagram on UDP port 580.

Note: The port number is generated in the NCP (using the UDPPORT keyword on
the IPOWNER statement) and configured in NCPROUTE.

The “Hello” message identifies the client NCP and determines which member from
the hlg.NCPROUTE.GATEWAYS partitioned data set to use for this NCP’s route
table. Any valid MVS data set name can be used for the gateways data set.

The NCP client then sends a list of its inactive links to NCPROUTE. NCPROUTE
uses additional routes defined for this NCP in the NCPROUTE gateways data set,
as defined in the NCPROUTE profile. It also uses the inactive links provided
dynamically by the NCP to build the current route table for this NCP. The following
process is repeated for each NCP that has been generated to act as a RIP router:
A RIP packet arrives at the NCP client from a foreign router.

The NCP client sends this datagram to the NCPROUTE server.

The NCPROUTE server processes the RIP packet.

The NCPROUTE server creates a RIP update for an NCP client.

This update is sent to the NCP client.

The NCP client transmits the datagram to the network.

o0k WD~

NCPROUTE sends route table updates to each NCP client every 30 seconds. After
a client has been activated, updates must be supplied over each of its interfaces
every 30 seconds. The NCPROUTE server creates these updates and sends them
to the NCP client along with the IP addresses of other RIP routers that the NCP
client should send them to.

At the same time, adjacent RIP routers are providing periodic updates every 30
seconds to NCPROUTE. These updates are sent by the NCP client to the
NCPROUTE server, where they are processed, and the results are reflected in
future updates back to the NCP client.

The NCP client sends all SNMP and RIP datagrams to the NCPROUTE server for
processing. The NCPROUTE server provides RIP packets and SNMP replies to the
NCP client to send to their final destination.

NCPROUTE gateways:

Passive RIP route: Information about passive routes is put in NCP’s and
NCPROUTE'’s routing tables. A passive entry in NCPROUTE’s routing table is used
as a placeholder to prevent a route from being propagated and from being
overwritten by a competing RIP route. With the exception of directly-connected
passive routes, passive routes are not propagated; they are known only by this
router.

Chapter 7. Network connectivity with an SNA network 287

Using passive routes can create routing loops, so care must be taken when
creating them.

Do not define passive routes such as these:
*+ Ato Cis via B.
* Bto CisviaA.

Passive routes should be used when adding routes where the host or network is
not running RIP. Passive routes should also be used when adding a default route,
because this is the only way to prevent a route from timing out.

External RIP route: External routes are managed by other protocols, for example,
the External Gateway Protocol (EGP). NCPROUTE needs to know not to interfere
with these routes and not to delete them.

An external entry exists in the NCPROUTE routing table as a place holder to
prevent a route from being overwritten by a competing RIP route. External routes
are not propagated. NCPROUTE does not manage an external route. Therefore,
NCPROUTE only knows that there is an existing route to the host or network and
that is the route known by NCP.

External routes should be used when the local machine is running a non-RIP
routing protocol that dynamically changes the TCP/IP routing tables. The remote
machine does not need to run any routing protocol, since the only concerns are
how to route traffic from the local machine to the remote machine, and how to
prevent multiple routing protocols from interfering with each other.

RIP route advertising rules:

Note: RIPv1 and RIPv2 protocols are mutually exclusive; you cannot run RIPv1
and RIPv2 simultaneously.

illustrates the differences between routing rules on the basis of RIP
version.

Table 13. RIP route advertising rules

Version? | Advertised | Same Different | Same Different | Same Different
destination | subnet network | network as |network |supernet | supernet
route’ as from interface from as from

interface |interface|regardless |interface |interface |interface
with of subnet
same mask
subnet
mask

RIPv1 Host Yes® Yes® Yes® Yes®
Subnet No Yes No No
Network No Yes
Supernet
Default Yes®

288 2/0S V1R4.0 CS: IP Configuration Guide

Table 13. RIP route advertising rules (continued)

Version? | Advertised | Same Different | Same Different | Same Different
destination | subnet network |network as | network |supernet | supernet
route’ as from interface from as from

interface |interface|regardless |interface |interface |interface
with of subnet
same mask
subnet
mask

RIPv2 Host Yes® Yes® Yes® Yes® Yes® Yes®
Subnet No Yes Yes Yes Yes Yes
Network No Yes No Yes
Supernet No Yes No Yes
Default Yes®

Notes:

1. According to RIP design, route advertising relies on network-specific routes
because they are the lowest common denominator. The network-specific routes
consist of supernet, network, and subnet routes. The advertising of host specific
routes is optional.

2. RIPv1 is the default setting for the RIP version. To set to RIPv2, specify the
RIP2 parameter in NCPROUTE Profile and/or on interface options in the
NCPROUTE Gateways data set.

3. The optional host specific routes are allowed to be advertised outside networks,
and they are advertised in addition to the network specific routes. The option is
enabled when the system -h parameter (or SUPPLY HOSTS option in
NCPROUTE Gateways data set) is specified.

4. Although it is possible to advertise only the host specific routes using the RIP
filters, doing so creates network unreachable problems when some routers in
the network do not support the host specific routes. These routers rely on
network-specific routes.

5. A default route has a network number of zero and is usually advertised over all
network interfaces.

6. It does not matter whether the advertised route is VIPA or not. VIPA routes
follow the same advertising rules as the non-VIPA routes.

7. Routes that are subjected to RIP filters may not be advertised at all over certain
network interfaces.

NCPROUTE active gateways: Active gateways are treated as remote network
interfaces. Active gateways are routers that are running RIP, but are reached
through a medium that does not allow broadcasting or multicasting and is not
point-to-point, for example, Hyperchannel. NCPROUTE normally requires that
routers be reachable by broadcast or multicast for non-point-to-point links or by
unicast addresses for point-to-point links. If the interf